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PREFACE

The Council for International Organizations of Medical Sciences (CIOMS) has played a pivotal 
role in the advancement of modern pharmacovigilance (PV) by developing guidelines that 
address ethical and scientific aspects of drugi development and safety. Notably, CIOMS has 
published guidance documents that have supported a structured approach for the collection 
and reporting of adverse drug reactions (ADRs) in addition to guidance on practical aspects 
of signal detection in PV, fostering international collaboration and standardisation in drug 
safety monitoring.

The thalidomide tragedy of the late 1950s and early 1960s exposed severe deficiencies in 
global drug safety practices, highlighting the need for comprehensive data collection and 
international harmonisation. In response, the World Health Organization (WHO) established 
the Programme for International Drug Monitoring in 1968, initiating efforts to share individual 
case reports between countries and harmonise data practices. Building on these foundational 
efforts, the late 1980s and the 1990s saw key CIOMS reports like the Monitoring and 
Assessment of Adverse Drug Effects (1985) and the International Reporting of Adverse 
Drug Reactions  (1987), both by the CIOMS Working Group I, and the Current Challenges 
in Pharmacovigilance: Pragmatic Approaches (1999) by the CIOMS Working Group V. 
Subsequent CIOMS Working Group reports and the establishment of the International Council 
for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) aimed 
to address the fragmented approaches to drug safety identified decades earlier, providing a 
framework for standardised adverse event (AE) collection and reporting in addition to signal 
detection processes.

Advancements in technology are transforming PV, with examples ranging from smart-phone 
and web apps for direct AE reporting,1 to the integration of data across large health networks 
to enable nearly real-time protocol-based assessment of AEs.2 The application of artificial 
intelligence (AI) to PV offers the hope of enhancing both the efficiency and quality of PV, but it 
calls for explainable, reliable, and responsible AI use, recognising that its usefulness requires 
human decision making and its acceptability needs to conform to regulatory expectations. 
Equally important is the ethical and responsible use of data, which underpins the integrity 
of AI outcomes and fosters public confidence in these technologies.

As AI continues to evolve and impact biomedical research, its increased integration in and 
impact on PV practice is inevitable. Given AI’s significant potential to enable transformative 
advancements, it is imperative that we engage in rigorous and forward-thinking discourse: 
how do we envision its development, validation, and deployment within this domain?

Since the CIOMS expert Working Group XIV on AI in PV was established in early 2022, there 
has been significant progress in the field, marked by the rapid development and widespread 
availability of generative AI (GenAI). While there is growing interest in exploring GenAI for PV 

i	 Medicine
In this report, we use medicines for products that are used to treat, prevent, or diagnose medical conditions 
as well as some that restore, correct or modify how the body works. In this report, these are products that fall 
within the scope of national and regional medicines regulatory authorities’ activities. Vaccines and medicine-device 
combinations fall within our description of medicines too. Other terms used interchangeably with medicines include 
drugs, medications, and medicinal products.

Adopted from: CIOMS Working Group XI
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applications, we recognise the need to focus on its appropriate use, which brings specific 
challenges in highly regulated domains such as PV, and we look to distinguish where possible 
and beneficial from general issues of AI use. Consequently, this report intends to offer a 
general framework of principles and good practices for developing and using AI in PV. Rather 
than offering technical guidance, the aim is to ensure continued relevance as AI capabilities 
advance. The report focuses on applications that are specific or particularly applicable to 
PV rather than considerations for the more general use of AI.

This report aims to provide guidance to individuals and organisations interested in developing 
solutions for the use of AI in PV, including regulators, industry, academic researchers, 
clinicians, patients, ethicists, technology vendors, and global organisations.

Preface – References
1	 Liyanage PH, Madhushika MT, Liyanage PLGC. Effectiveness of mobile applications in enhancing adverse drug 
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EXECUTIVE SUMMARY

The Council for International Organizations of Medical Sciences (CIOMS) report on artificial 
intelligence (AI) in pharmacovigilance (PV) addresses a rapidly emerging cross-disciplinary field 
that is at the intersection of PV, computer science, mathematics, regulation, law, medicine, 
human rights, psychology and social science. Consequently, just as with medicinal products, 
it is important to establish the approved indications, posology, side effects, and warnings and 
precautions for use of AI in PV. The latter must be clearly defined and understood by many 
people from different backgrounds to propel research and practical implementation in an 
effective, safe and responsible manner. The diverse pool includes professionals, researchers, 
and decision makers working in PV in biopharmaceutical industry, regulatory authorities, 
and academia. It also includes software vendors that develop AI solutions PV, including signal 
management and all aspects of Individual Case Safety Report (ICSR) processing. This report 
provides the requisite terminology and conceptual understanding to actively engage in this 
space, either by participating in the applied scientific research and public discourse, or by 
performing evaluations and making decisions at one's organisation.

Perhaps more than other CIOMS report topics, the potential hazards of AI in PV and related 
points are major elements of our key results because rapidly evolving, advanced and often 
opaque technologies may generate a rush of excited promotion and initial over-estimation 
of utility, observed in so called technology “hype cycles”, that does not correspond with 
the practical realities. There is a corresponding safety net of core guiding principles for 
human protection elaborated by multiple organisations, through which AI in PV must grow. 
This report provides a set of guiding principles and corresponding organisations that have 
elaborated each one. These principles form the bulk of the report: a risk-based approach, 
human oversight, validity and robustness, transparency, data privacy, fairness and equity, 
and governance and accountability. Key points to consider for these guiding principles are 
elaborated throughout the report and summarised concisely below.

Similar to prior CIOMS reports, this one benefits from a consensus position from multiple 
stakeholders, including those based in regulatory agencies, academia, and industry. 
The Working Group (WG) recognised that the field of AI is progressing so rapidly that a 
prescriptive document would likely be quickly outdated. Instead, the WG decided to focus 
on a set of common principles that were expected to be useful for years to come for PV 
professionals. PV is but one of a myriad of AI applications that are now transforming many 
aspects of modern life. As such, this report benefits as well from the increasing interest in 
AI by national governments, several of which have issued legislation and guidances not only 
on AI in drug development but also more broadly on the general use of AI.

Risk-based approach. Integrating AI into PV processes needs to take into account the 
potential inaccuracies and variability of AI systems, and corresponding impacts on the safety 
and well-being of individuals and society. The level of risk, and corresponding intensity of 
oversight, depends on two considerations: 1. whether the decision is a high stakes decision, 
i.e. are the outputs used to make a critical decision(s) for which an error has substantial 
adverse consequences to humans; and 2. whether the AI solution is intended to be used 
in unchecked, stand-alone mode versus with a human-computer interaction. A sound risk-
based approach, in which the human oversight in the development and deployment of AI is 
commensurate with these risks, enables organisations to make the most of AI capabilities 
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while ensuring that neither patient safety nor PV stakeholders are adversely affected. For a 
given PV application, the risk-based approach applies to the human oversight modalities, 
the validity and robustness strategy, the level of transparency, and the efforts to uphold 
fairness and equity, and data privacy. The risk assessment should consider the AI system itself, 
the context of use, and the potential impact and likelihood of risks materialising. A risk-based 
approach should be reviewed and documented at regular intervals and adapted if needed.

Human oversight. Human oversight supports performance optimisation of AI in PV and 
increases trustworthiness and accountability. The extent and nature of human oversight for 
an AI solution should be risk-based, incorporating quality assurance principles. The human 
oversight might be “human-in-the-loop” where the decision is the end result of a human-machine 
interaction, while in “human-on-the-loop”, the machine autonomously makes a decision or 
otherwise returns a result that is checked by a human. Human oversight is necessary to 
define fit-for-purpose levels of performance for the intended task (i.e. validity). It involves 
predefining acceptable performance benchmarks, selecting appropriate data for model 
development and testing/validation in a realistic setting, an ongoing quality assessment 
process and retraining or dynamic/online learning of the model as needed. Increased use 
of automation and AI in PV will transform traditional roles and competencies, requiring 
appropriate change management and training strategies.

Validity & Robustness. PV stakeholders must learn to continually and critically appraise 
proposed AI solutions. Performance evaluation must demonstrate acceptable and robust results 
for intended use under realistic conditions. Such an evaluation should be both qualitative and 
quantitative, a cross-disciplinary exercise, and span a diverse range of relevant examples. 
Evaluations should use a sufficient representation of relevant data types (e.g. data sources 
such as spontaneous reports, clinical trials, and literature), reporter/patient characteristics, 
and a variety of medicines, vaccines, and AEs, to mitigate the chance of, and detect, biases, 
promote adequate and generalisable performance across the intended deployment domain, 
assess usability, and identify circumstances associated with underperformance. As many 
applications in PV focus on recognition of rare events or patterns (e.g. safety signals and 
duplicates), enrichment strategies to obtain representative test sets with high enough 
prevalence of the outcome may be required. Special care should be taken to attempt to 
ensure that performance evaluation results generalise to real-world settings.

Transparency. Declaring when and how AI solutions are used is critical for building trust among 
stakeholders. The nature of AI solutions deployed for core PV tasks, with a corresponding 
value proposition, should be communicated, including model development and architectures, 
expected inputs and outputs, and the nature of human-computer interaction.  To fully 
characterise an AI solution’s effectiveness and limitations, performance evaluation results 
should describe the scope and nature of the test set(s) used including reference standards 
and sampling strategies. Performance metrics should be relevant for the intended tasks, 
compared with relevant benchmarks, and complemented by qualitative review of representative 
examples of correct and incorrect output. Explainability is an important concept relevant 
to those models whose internal decision pathways are so intricate and non-linear that they 
remain inscrutable even to technically literate persons – so called black boxes of the first 
kind. Explainable AI are a set of techniques that return plausible hypotheses about these 
pathways – roughly how the black box arrived at its outputs. To be able to do this can be 
advantageous to model building/trouble shooting, building trust, establishing auditability and 
accountability, including providing a basis for a human to challenge an AI result that may 
be adversely impacting them, regulatory compliance and scientific hypothesis generation. 
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If possible, a description of the general principles and logic by which an AI model functions 
and arrives at its outcomes / predictions should be shared, or the lack of such explainability 
should be acknowledged and its implications discussed. However, explainable AI methods 
have limitations, and they only provide plausible hypotheses, but are no guarantee that the 
AI in fact used the hypothesized decision pathways.

Data Privacy. The ethical framework to evaluate the use of AI in PV is embedded within the 
standard principles for research activities involving human subjects. A crucial principle for the 
use of AI in routine PV is the sanctity of data privacy. With the increasing power of both the 
hardware and software that power AI, there is a vast potential to build large, linked databases, 
and the potential inherent in Large Language Models (LLMs) for patient re-identification, which 
may be addressed by pre-deployment data-protection-impact-assessments. These may pose 
an ongoing challenge to the traditional safeguards that protect data privacy. In this context, 
there are multiple opportunities to reveal highly sensitive personal and health information to a 
broad, cross-disciplinary range of stakeholders throughout the AI development and deployment 
workflow. Consequently, countries have been enacting legislation and guidances intended 
to protect these data. PV professionals and other relevant stakeholders, such as software 
vendors, should recognise that existing procedures used to assure regulatory compliance may 
need to be re-evaluated due to the heightened risks of GenAI to compromise data privacy.

Fairness & Equity. Key regulatory and ethical imperatives for the fair and equitable use 
of AI in PV include: supporting fairness and equity, avoiding propagating or amplifying 
harmful explicit biases, discrimination and inaccurate results during model development and 
deployment, and underserving certain subpopulations, which may even permeate the initial 
decision of whether or not to implement an AI solution. Equity may be advanced by taking 
measures to assure that AI in PV returns outputs that are relevant to populations anticipated 
to have exposure to the specific medicinal product being evaluated. Screening, identifying 
and excising explicit or potential bias when possible is key to mitigating risk, determining AI 
applicability and limitations, and defining acceptable performance. Training and performance 
evaluation of reference data sets should be scrutinised for adequate representation and 
performance evaluated in relevant subgroups when possible. Inadequate reference data is 
often the cause of inadequate fairness and equity.

Governance & Accountability. Robust governance and clear accountability are crucial 
for the success of AI initiatives. These principles help ensure that AI solutions are used 
safely, responsibly and ethically, and in compliance with all applicable legal and regulatory 
mandates while fostering trust and transparency among stakeholders. Clearly defined roles 
and responsibilities are crucial to enable all stakeholders to understand their accountability 
and obligations in order to effectively oversee AI solutions.

As AI technology evolves, governance and accountability frameworks will need to be adapted. 
New risks and challenges will emerge, requiring updated principles and practices. Continuous 
review and adaptation are essential for staying ahead of these changes. This includes the 
adaptation and refinement of a proposed governance framework grid (see Chapter 9 on 
Governance & Accountability) of the aforementioned guiding principles for practical use.

Future considerations for development and deployment of artificial intelligence 
in pharmacovigilance. Increasing deployment of AI in PV is expected to prioritise and 
accommodate rapid data collection, assessment and reporting for signal detection in real 
or quasi real time. This may also be accompanied by a relative shift from warm-start to cold-
start prediction scenarios (i.e. post-approval to early-stage drug development). This could 
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fundamentally change the way we take advantage of these technological advances, for example, 
streamlining processes and causing changes in the wider healthcare environment and beyond, 
including patient privacy. We also expect to see increasing deployment of AI in PV in the 
clinic, where it could support primary, secondary and tertiary prevention of adverse drug 
reactions. The extent to which humans remain in- or on-the-loop will be determined by the 
nature of the task (e.g. routinised tasks versus those requiring expert clinical and scientific 
judgement), consistent with the elaborated risk-based approach, but it is possible that some 
AI-based expert systems could eventually develop refined medical and scientific judgement.

It is critical that the guiding principles outlined in this report remain as core considerations 
and responsibly applied in specific context of use. They will need to evolve and adapt with 
advancements and application of AI in PV and medicine in general, which requires flexibility 
and full understanding of the process, data, and capabilities and limitations of AI. This is to 
ensure AI use in PV remains unbiased, transparent, and secure to prevent misuse or accidental 
harm. The appropriate human oversight, including regulatory and ethical safeguards, will be 
as crucial as the technological advancements being applied.
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Chapter 1.  
INTRODUCTION

An AI system is a machine-based system that, for explicit or implicit objectives, infers, from the 
input it receives, how to generate outputs such as predictions, content, recommendations, 
or decisions that can influence physical or virtual environments.1 Different AI systems vary 
in their levels of autonomy and adaptiveness after deployment. The definition encompasses 
systems ranging from those explicitly programmed to perform tasks based on human 
expertise, to machine learning (ML) based methods, including more complex approaches 
such as deep neural networks. We acknowledge however that organisations that use an AI 
system may apply narrower definitions in their own processes.

In the context of PV, the use of AI systems and activities is aimed at enhancing drug safety 
monitoring, patient safety and regulatory compliance with the overall objective to inform 
decisions to optimise treatment benefit-risk. PV is practiced not only at pharmaceutical 
companies, health authorities, drug monitoring centres and academia, but also in the clinic, 
and AI is finding applications to PV in all these settings.2

An AI solution should be designed to address specific objectives within PV. The overall AI 
solution could be developed with one or many AI systems. An AI system encompasses 
the model(s) and components necessary for operation, including user interfaces and data 
processing pipelines. At the core of these systems are AI models. These models utilise 
parameters to learn patterns or relationships within data, enabling the systems to adapt and 
improve model performance over time or support knowledge retrieval systems.

Simpler AI systems, such as statistical methods for signal detection, have been widely 
utilised in PV for decades.3 However, the past decade(s) have seen drastic improvements in 
AI capabilities, particularly in image analysis and natural language processing (NLP). These 
advancements have resulted in a significant increase in their use. In addition, continual 
advances in computing power and model architectures have enabled the development and 
aggregation of large electronic databases with potential for linkage. These have enabled the 
field of AI to be applied to an increasing number of disciplines, including the life sciences.4 
Within the life sciences, AI is being applied to a growing number of areas, such as, medical 
imaging and diagnostics, drug discovery and development, genomics, precision medicine, 
public health, and healthcare delivery.5

Partly due to advances in AI, the pharmaceutical field is poised for rapid transformation 
across clinical, regulatory and PV practices, aiming to streamline end-to-end processes to 
accelerate product development and market delivery. Similarly, there is a growing emphasis 
focusing on enhancing clinical and post-marketing safety and risk management activities to 
enable proactive identification (or even prediction) of safety signals and benefit-risk evaluation. 
In the clinic, AI is being tested or deployed for early diagnosis (and thus secondary and 
tertiary prevention) of various adverse drug reactions. Examples include early detection of 
hydroxychloroquine retinopathy,6 digoxin toxicity,7 and drug-induced movement disorders 
in Parkinsons patients.8

These advancements leverage massive integrated datasets and inductive logic, enabling 
AI models to make plausible inferences by utilising accumulated data, rather than relying 
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solely on explicit rules or human intervention. This approach facilitates the development of 
AI systems that provide new, improved, or complementary solutions. A critical enabler for 
AI success within PV will be the ability to link and analyse large volumes of heterogeneous 
data of varying quality from diverse data sources, such as electronic health records (EHRs), 
claims databases, registries, Internet of Things (IoTs), and connected devices. The ability to 
leverage health data can lead to potentially faster development of new treatments, improved 
patient outcomes, and reduced healthcare costs, including the potential for unlocking novel, 
useful, and actionable insights that might not have been identified otherwise. Linkage to 
external datasets may entail additional privacy implications and risks. To mitigate these 
risks, privacy-preserving record linkage approaches can be employed, enabling secure 
and ethical data integration while maintaining patient confidentiality.9,10 Hence, there is 
an acute need to effectively communicate the key importance of data access to support 
patient safety outcomes.

Incorporating AI into PV necessitates a thorough assessment of its potential benefits and 
risks, helping stakeholders understand its implications for existing practices. Given the 
rapid pace of change, this document does not prescribe specific uses for AI in PV but rather 
establishes and promotes guiding principles for utilising AI including ML.

The start of systematic safety monitoring predated the advent of the internet and widespread 
electronic reporting capabilities. As such, it was a largely manual process that relied upon 
computing for purposes such as summarising data.

Individual case safety reports (ICSRs) are a key component of PV and remain a cornerstone 
of post-market safety surveillance as they provide crucial safety information for an approved 
pharmaceutical product, which is important to mitigate patient harm when assessed within 
a broader signal management system.

The processing of ICSRs involves several steps: collection, triage, data entry, quality review, 
medical assessment, with further dissemination to other safety databases (e.g. regulatory 
authorities). As the number of product approvals and the patient exposure grow, so does the 
number of reported AEs. The increased volume of ICSRs, coupled with stringent regulations 
impacting PV, creates significant challenges in ICSR processing and compliance.

Once a signal is detected as a result of individual or aggregate analysis of AE reports, it needs 
to be systematically investigated through sequential steps, which include signal triage, 
validation, and, based on scientific assessment, formal evaluation using independent data 
sets, such as hypothesis-testing research studies.11 Such investigation must be conducted 
in an integrated, holistic fashion with all available scientific evidence and logic, offering wider 
opportunities for use of AI for data insights (see Figure 1).

Traditional PV methods for analysis of AE reports include:12,11

	— Review of ICSRs or case series in a PV database or in published medical or scientific 
literature; and

	— Aggregate analyses of case reports using absolute case counts, simple reporting 
rates, proportions or estimated exposure-adjusted reporting rates.

While ICSRs are fundamental to PV, other data streams are also considered throughout 
the PV lifecycle. These streams may be directly linked or conceptually related and include 
pharmacokinetic  / pharmacodynamic (PK-PD) data, real-world data (RWD), literature, 
and information from clinical trials etc.
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Once safety concerns (including important identified risks or important potential risks) and 
missing information are identified, risk management activities are put in place to communicate 
them appropriately to a wide range of stakeholders. This is achieved through documents such 
as aggregate reports, risk management plans, labelling information and Direct Healthcare 
Professional communications (DHPCs).

Figure 1.	 Representative signal management process
Source: Modified from CIOMS Working Group report VIII11
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The COVID-19 pandemic has further emphasised the need for advanced methods in PV, 
as it has led to a significant rise in safety reports (see Figure 2 and Figure 3).13,14 As public 
awareness and expectations regarding drug safety continue to rise, there is a greater demand 
for robust PV systems that can effectively identify and mitigate potential risks associated 
with medicines.

Figure 2:	 Growth over time of VigiBase, the World Health Organization 
global database of adverse event reports for medicines 
and vaccines

Source: VigiBase accessed April 2025. Figure reproduced with permission.
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Figure 3:	 Growth over time of the FDA Adverse Event Reporting System 
(FAERS) database

Source: Constructed using FDA FAERS database.15
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The challenges of establishing and maintaining progressively more complex PV systems in 
a globally diverse and evolving regulatory environment are increasing. There is a need to 
rethink traditional PV strategies based on existing pressures on the one hand (e.g. managing 
increasing volumes and increasing regulatory complexity) and increasing data sources on 
the other.

Technology solutions are already vital for the evolution of PV. While this notion of technology 
as a transformative enabler spans across all areas of product development, it is evident 
that applying innovative automation tools and processes to PV is no longer an option but 
an essential need.

Rapid evolution of artificial intelligence

Traditional AI methods (e.g. K-means clustering, decision trees, support vector machines) 
have been tailored for specific tasks, primarily utilising supervised learning techniques. 
In contrast, deep neural networks such as BERTi have played a significant role in NLP, where 
they are pre-trained on large datasets and subsequently fine-tuned for specific applications 
delivering predictable outputs.

i	 BERT: Bidirectional Encoder Representations from Transformers
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However, the landscape has been evolving beyond this framework thanks to emerging 
technologies like GenAI, knowledge graphs and ontologies. GenAI models are trained on 
expansive and varied text corpuses, often incorporating phases of human reinforcement 
learning. These models can perform specific tasks using sophisticated prompts, adopting 
zero-shot or few-shot ML learning techniques.

1.1.	 Scope
This document aims to guide those working in PV in addition to organisations developing AI 
solutions for the PV domain, such as regulators, medicinal products industry professionals, 
software vendors, international and national PV organisations, researchers, and health 
care professionals.

This report proposes a broad framework of principles and best practices for integrating 
and implementing AI within PV, not technical guidance. Recognising the rapid evolution and 
application of AI technology, the CIOMS Working Group XIV developed this document to guide 
the development and integration of AI systems into PV activities.

Our scope focuses on all aspects, direct and indirect, of the optimal collection, organisation, 
analysis, and communication of ICSRs from any source, including RWD, medical literature, 
randomised controlled trials (RCTs), and social media. Additionally, it includes productivity 
enhancers closely linked to PV, such as systems that improve querying of safety databases16 
or capabilities that enable faster, more effective, or consistent data entry into a safety 
database which also contributes to better safety surveillance.17

The scope deliberately excludes broader healthcare data applications outside the direct 
purview of PV, such as pharmacoepidemiology and other real-world evidence study designs 
and conduct that fall outside the realm of ICSRs. Similarly, the general use of AI as a 
productivity enhancer, if not directly connected to PV activities (e.g. for email support), 
is excluded, as considerations may differ.

The scope has been intentionally limited to provide a practical guidance organised as principles 
and their applications of AI in PV, rather than detailed guidance to ensure longevity. As AI 
is progressing extremely rapidly, future opportunities and considerations are described in 
a later chapter.
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Chapter 2.  
LANDSCAPE ANALYSIS

2.1.	 Use of artificial intelligence in 
pharmacovigilance to date

AI may directly or indirectly impact all aspects of PV (see Figure 1: Representative signal 
management). In this chapter, we discuss systems that incorporate elements of AI and have 
been developed or deployed for a variety of tasks across PV, focusing on those that have 
been implemented specifically for PV or have attributes or features especially prominent in 
PV applications and processes. For example, AI systems for general translation tasks are 
out of scope, but PV specific translations, e.g. of AE reports or reporter source documents 
(e.g. original case reports, transcriptions of a call), are in scope. Additionally, research on AI 
methods to identify covariates for inclusion in propensity score models for epidemiological 
studies are out of scope. Rather than seeking to provide an exhaustive enumeration, the aim 
here is to illustrate the range and variety of current applications. Additional examples can 
be found in recent review articles.1 The reader is also referred to the many perspectives 
and commentaries that discuss the use of AI in PV2,3,4,5, and the cautionary notes that have 
been provided.6

2.1.1.	 Adverse event capture
AI systems have been proposed and evaluated for a variety of tasks related to NLP of social 
media content to identify references to (personal experiences of) medicine use and AEs 
that may provide the basis for AE reports. These tasks include identifying relevant posts,7,8 
identifying relevant parts of such posts,9 normalising descriptions of AEs or medicinal 
products within such posts to standardised terminologies like the Medical Dictionary for 
Regulatory Activities (MedDRA) or the Anatomical Therapeutic Chemical (ATC) classification 
system code,10 and classifying the relationship between AEs and drugs mentioned in the 
same posts.11

Similarly, AI methods have been developed to support screening the scientific literature for 
AEs that may be captured on AE reports.12,13

2.1.2.	 Individual Case Safety Report Processing
An area of ICSR processing where AI systems have been in routine use by some organisations 
since at least the 2010’s is duplicate detection, which relates to the identification of multiple 
unlinked records describing the same AE in a particular patient.14 Duplicate detection methods 
based on ML and probabilistic record linkage have been implemented for VigiBase,15 US Food 
and Drug Administration Adverse Event Reporting System (FAERS),16 and EudraVigilance.17 
The use of NLP to improve duplicate detection by extracting and incorporating information 
from free text has also been explored.16 Rule-based methods are more widely used and 
easier to implement but do not perform as well.14,18
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Another area where AI has been used to support ICSR processing is in the encoding of 
information on AEs19,20 or medicinal products21 on AE reports in standard terminologies 
based on verbatim fields and/or free-flowing case narratives. NLP has also been applied to 
extract relevant information from case narratives and map it to structured fields22,23,24,25,26,27 
and for ICSR translation.28

Several organisations who process large numbers of case reports have also automated 
repetitive, labour-intensive tasks using rule-based so-called Robotic Process Automation (RPA) 
technologies.29 These operate on the user interface of other computer systems mimicking 
actions that humans otherwise would take.30 They may for example automate duplicate 
checking and importing of cases, as described by TransCelerate.31

Other applications of AI systems during ICSR processing include methods that have been 
developed to create narratives from structured data,29 help support triage of incoming 
reports for human review,32,33 help support individual case causality assessment,34 and 
automate redaction of person names in case narratives.35

2.1.3.	 Signal detection and analysis
The earliest examples of real-world use of (simple, narrow, and rule-based) AI in PV are 
from the late 1990s. At this point, disproportionality analysis, first conceptualised in the 
1970s,36 began to be implemented as part of rule-based triage algorithms to help direct 
the attention of PV specialists in their analysis of large national and international collections 
of individual case reports.37,38,39,40 Since then, various incremental improvements have 
been introduced and evaluated including automated adjustment for confounding through e.g. 
regression,41,42 or propensity scores,43 extensions to drug-drug interactions,44,45,46,47,48,49 
and other possible risk factors for adverse reactions.50 Methods to detect AEs associated 
with the production process or with substandard or counterfeit medicines have also been 
explored.51,52,53 In addition, there have been efforts to develop predictive models for 
statistical signal detection that account for other aspects of a case series, such as its 
geographic spread and the quality and content of individual reports,54 the time-to-onset of 
the reported reactions,55 or a combination of e.g. Naranjo scores and the proportions of 
reports on a drug-AE combination coming from healthcare professionals (HCPs) and marketing 
authorisation holders (MAHs), respectively.56

NLP has been applied to mine regulatory information,57 scientific literature, and clinical 
notes58,59,60,61 for information on already known/unknown and potentially serious adverse 
effects. This may support and streamline decision making, especially during early signal 
assessment and prioritisation.

Some published AI-based signal detection exercises provide tantalising glimpses of how elegant 
AI solutions may uncover truly novel AEs.62 At the same time, caution is warranted in that 
highly technical and elegant methods may be associated with overly optimistic interpretations 
of, and corresponding messaging about, the results, which may disseminate widely.63

Several organisations have developed predictive models for ICSR prioritisation to assess 
causal associations between drugs and AEs and/or inform a regulatory action.64,65,33,66,67 
These can be used to prioritise reports for human review during signal assessment and/or 
case processing. Semantic search has been developed for case narratives to support signal 
detection and assessment68,69 and there have been efforts to provide ML-based decision 
support for signal validation70 and to automatically visualise relevant information on case 
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reports to facilitate human review during signal assessment.71 ML has been used to help 
estimate the proportion of patients with a genotype associated with drug toxicity based on 
the phenotypical manifestations reported in ICSRs.72

Applications of unsupervised learning have been developed to support signal detection and 
analysis, especially seeking to bring together reports describing similar or related AEs. 
These include network analyses of AEs (and to a lesser extent drugs),73,74,75,76,77 cluster 
analysis of AE reports,78,79and data-driven derivations of semantic representations of AEs 
and drugs.80,81

Datasets with information about drug side effects and indications such as DrugBank82 and 
SIDER,83 as well as those with information on pharmacology and chemical structures such 
as Bio2RDF,84 have been leveraged to enhance PV signal detection and analysis,85,86,87 
or derive knowledge graphs that can serve as downstream inputs for AI-based predictive 
signal detection.88,90 There have also been AI applications that help retrieve scientific papers 
relevant to the analysis of possible adverse effects.

2.1.4.	 Early applications of generative AI in pharmacovigilance
Early applications of generative Large Language Models (LLMs) in PV have started to be 
explored. They include also applications where generative LLMs are prompted or post-processed 
to more restricted outputs, as a basis for e.g. classification or named entity recognition. 
Examples to date include use of generative LLMs to simplify the patient communication 
from a regulatory authority,89 summarisation for drug labelling documents90 and of case 
narratives,91 screening scientific literature and social media,13,92 search of drug safety 
documentation,5 Q&A for drug labelling,93 PV context-aware generation of Structured Query 
Language (SQL) code,94 and drafting follow-up letters to reporters.95

2.1.5.	 Examples of deployed AI solutions
Much of the research and development of AI solutions for PV to date has been experimental, 
with either no real-world deployment yet or only limited experimental use, for example in the 
form of pilot studies. However, Table 1 presents examples of AI solutions that have been 
adopted for routine use in PV by various PV organisations and are described in the public 
domain. The deployment of AI solutions by pharmaceutical companies may be largely based 
on software vendor implementations, which are not described in the public domain.96 Similarly, 
several AI solutions deployed by the European Medicines Agency (EMA) are described in 
public domain,97 but not yet in separate scientific publications. See also the use cases 
presented in Appendix 3.
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Table 1:	 Examples of deployed artificial intelligence solutions in 
pharmacovigilance described in the public domain

Source: CIOMS XIV working group

AI solution Pharmacovigilance context / database

Automated coding of medicinal 
products

VigiBase21

Duplicate detection FAERS,98 VigiBase15

Automated triages of individual 
case reports

Swedish Medical Products Agency34, pharmaceutical 
companies99

Automated triages for 
quantitative signal detection

Databases of various regulatory authorities, 
international organisations, and pharmaceutical 
companies

Predictive models for quantitative 
signal detection

VigiBase,56,100 Netherlands pharmacovigilance centre 
Lareb101

Adverse event cluster analysis for 
signal detection and assessment

VigiBase80,102

Literature surveillance for safety 
data

EudraVigilance103 Netherlands pharmacovigilance 
centre Lareb104

2.2.	 Regulatory considerations
Since 2017, countries around the world have been developing national AI strategies in order 
to adapt to technological advancements and their impact on society and the economy.105 
Countries have developed different regulatory frameworks and guiding principles to ensure the 
ethical use and trustworthiness of AI systems, and legislations of AI are being implemented 
(i.e. European Artificial Intelligence Act [EU AI Act]106, Artificial Intelligence and Data Act 
[AIDA]).107,111 In addition, there have been published reflection and discussion papers 
on the use of AI in medicinal products by the EMA and the United States Food and Drug 
Administration (FDA), as well as a draft guidance on AI use to support regulatory decision 
making for drug products by the US FDA.

2.2.1.	 Guiding Principles for AI in Pharmacovigilance
There are numerous published guiding principles for safe and responsible use of AI by 
governments, regulatory bodies and international organisations such as the WHO and The 
Organisation for Economic Co-operation and Development (OECD). Select publications defining 
guiding principles and recommended best practices for safe and responsible AI use in regulated 
fields were reviewed by the CIOMS Working Group XIV. Although these publications were not 
developed specifically for PV, the described guiding principles for AI were determined to be 
applicable to the field of PV. It should be acknowledged that some discretion was used by 
the CIOMS Working Group XIV to establish the guiding principles for PV from these various 
publications, as some of the principles were described in conjunction with other principles. 
Of note, the US reference used by the CIOMS Working Group XIV has since been archived 
and no longer represent the current US policy; however, this reference has been retained as 
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it was used to inform the development of guiding principles for this report. For more current 
AI policies from other countries, please refer to the Artificial Intelligence Policy Tracker.108 
Table 2 provides an overall comparison of the guiding AI principles from select governmental 
institutions and international organisations. A non-exhaustive description of the AI principles 
is presented in Appendix 2:

Table 2:	 Comparison of CIOMS Working Group XIV guiding principles for artificial 
intelligence across regional and country government institutions, 
and international organisations

Source: CIOMS Working Group XIV

Examples of regional - and country government institutions’, and 
international organisations’ principles

Principle EU109,110 Australia111 Canada113 Singapore112 UK113 US114 PAHO115 WHO116 OECD117

Human 
Oversight

       

Validity & 
Robustness

      

Data 
Privacy

    

Transparency        

Accountability         

Societal 
well‑being

     

Environmental

Well-being

   

Fairness &

Equity

        

Explainability       

Safety       

Governance   

2.2.2.	 The EMA Reflection Paper on the Use of Artificial 
Intelligence (AI) in the Medicinal Product Lifecycle

On September 9, 2024, the EMA finalised its Reflection paper on the use of AI in the 
medicinal product lifecycle.118 The reflection paper addresses the use of AI/ML in the safe 
and effective development, manufacturing and use of medicines.

The EMA advocates a risk-based approach for the development, deployment and monitoring 
of AI and ML tools throughout the system lifecycle. The paper uses the terms ‘high patient 
risk’ for systems affecting patient safety and ‘high regulatory impact’ for cases with a 
substantial impact on regulatory decision making. It is expected that applicants/ MAHs 
and developers of AI and ML systems will perform a regulatory impact and risk analysis. 
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The level of scrutiny of the AI and ML systems will be dependent on the assessment of risk 
level and regulatory impact.

The paper provides technical and regulatory considerations on the use of AI and ML 
throughout the lifecycle of medicinal products, from drug discovery and development 
to post-authorisation settings. Specifically for PV, the paper notes that AI/ML tools can 
effectively support activities such as AE report management and signal detection, in line 
with applicable Good Pharmacovigilance Practices (GVP) requirements. Applications within PV 
may allow a more flexible approach to AI/ML modelling and deployment than other domains, 
for example, to improve severity scoring of AE reports and signal detection. It is, however, 
the responsibility of the MAH to validate, monitor and document model performance and 
include AI/ML operations in the PV system, to mitigate risks related to all algorithms and 
models used.

Generally, the applicant or MAH is responsible for ensuring that all elements of the AI and 
ML applications (i.e. algorithms, models, datasets, and data processing pipelines) are fit 
for purpose and comply with Good [x] Practices (GxP) standards and current EMA scientific 
guidelines. Member State data protection authorities are responsible for the supervision and 
monitoring of data protection compliance of AI systems. Applicants or MAHs and developers 
are recommended to engage with EMA on experimental technology, especially for AI and ML 
models that may have a high impact on the regulatory decision making.118

The EMA is planning to develop further guidance on the use of AI in the medicines lifecycle, 
including in PV.118

2.2.3.	 US FDA Discussion Paper on Using Artificial Intelligence & 
Machine Learning in the Development of Drug & Biological 
Products

In May 2023, the U.S. Food and Drug Administration (FDA) published a discussion paper 
on “Using Artificial Intelligence & Machine Learning in the Development of Drug & Biological 
Products”.119 The US FDA acknowledges the increased use of AI/ML in the lifecycle of 
drug development with novel approaches in data mining, analysing large multi-omics, PK/
PD modelling, real-world data, data collection from wearable devices and other datasets 
(e.g. in vitro and in vivo studies, mechanistic studies, and multi-organ chip systems). In post-
marketing safety surveillance, the US FDA sees the potential to: i) automate the processing 
and prioritisation of ICSR using AI/ML, due to the increasing volume of reports and complexity 
of data sources; ii) classify ICSRs on the likelihood of causal relationship between the drug 
and AE; iii) determine the seriousness of the outcome of ICSRs; and iv) automate aggregate 
reports for multiple AEs for a particular product.

2.2.4.	 US FDA Draft Guidance on Considerations for the 
Use of Artificial Intelligence to Support Regulatory 
Decision‑Making for Drug and Biological Products

The US FDA published a draft guidance titled “Considerations for the Use of Artificial 
Intelligence to Support Regulatory Decision-Making for Drug and Biological Products 
Guidance for Industry and Other Interested Parties” in January 2025120. It elaborates a risk-
based credibility assessment framework for AI. The scope of the document focuses on the 
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support of regulatory decision-making pertaining to the safety, effectiveness, or quality for 
drugs. Out of scope are drug discovery or scenarios in which AI is deployed for operational 
efficiencies. It considers AI broadly, i.e. not limited to specific subsets of AI such as ML. 
There are three major segments of the draft guidance:

1.	 Establishing a risk-based credibility assessment framework (see also Chapter on Risk-
based approach);

2.	 Lifecycle credibility maintenance;

3.	 Options for sponsors for engaging with the agency to discuss AI model development.

The risk-based credibility assessment framework has seven steps as below.

1.	 Define the question to be addressed by an AI model.

2.	 Define the “context of use (COU)” as “….the specific role and scope of the AI model used 
to address a question of interest”. Importantly, this includes whether the questions being 
answered, and any ensuing classifications or decisions, are based solely on the AI outputs 
versus the AI being used in conjunction with other information (i.e. “model influence”). 
This is important because it helps define the associated risk in the subsequent step.

3.	 Define model risk. This is determined by model influence as defined in the COU and 
decision consequence - i.e. the consequences of an incorrect decision. The risk is 
highest when the AI model is operating in a stand-alone capacity and incorrect decisions 
present a major hazard. The required level of oversight throughout the development and 
production cycle is positively correlated with the risk.

4.	 Develop a plan to establish AI model credibility within the COU.

5.	 Execution of the plan.

6.	 Document the results of the credibility assessment plan and discuss deviations from 
the plan.

7.	 Determine the Adequacy of the AI Model for the COU.121

2.2.5.	 US FDA Emerging Drug Safety Technology Program
The US FDA established the Emerging Drug Safety Technology Program (EDSTP) in June 2024 
to engage with industry stakeholders on AI and other emerging novel technologies used in 
PV and the lifecycle of the drug product. The three goals of the EDSTP include discussion 
between industry and US FDA, knowledge dissemination of emerging AI/ML models or other 
emerging novel technologies, and to inform potential regulatory or policy development within 
the context of PV.122

2.2.6.	 Guidance on use of Large Language Models
Since the release of ChatGPT (Generative Pre-trained Transformer) on November 30, 2022, 
there has been significant work in exploring how GenAI could be adapted to a variety of tasks 
(such as text and image generation, coding, brainstorming, and research) for productivity 
gains. Given the potential use and broad applicability of GenAI, regulatory agencies and 
organisations have developed high level guides and best practices on the safe and responsible 
use of GenAI by their own staff and broader stakeholder groups, respectively, which aligns 
with established guiding principles for AI:
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	— Guiding principles on the use of Large Language Models (LLMs) in regulatory science 
and for medicines regulatory activities (EMA123);

	— Guide on the use of generative AI (Canada124);

	— Initial policy considerations for generative artificial intelligence (OECD125);

	— WHO Ethics and governance of artificial intelligence for health: Guidance on large 
multi-modal models. (WHO126).

2.2.7.	 Guidelines for safe Artificial Intelligence
Other related regulatory and international organisation (e.g. WHO and OECD) published 
guidelines for safe AI:

	— Regulatory considerations on artificial intelligence for health, WHO 2023;127

	— Ethics Guidelines for Trustworthy AI, European Commission 2019;128

	— Recommendation of the Council on Artificial Intelligence, OECD 2019, amended 2023;129

	— Good Machine Learning Practice for Medical Device Development: Guiding Principles, 
US FDA, Health Canada, MHRA 2021;130

	— Transparency for Machine Learning-Enabled Medical Devices: Guiding Principles;131

	— ISO/IEC 23894:2023 Information technology - Artificial Intelligence – Guidance on 
risk management.132
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Chapter 3.  
RISK-BASED APPROACH

Principle

A risk-based approach acknowledges the potential hazards that AI systems can pose 
and recognises that different use cases present varying types and levels of risk in the 
execution of core PV tasks. This necessitates a risk assessment that identifies, prioritises, 
and manages risks that could negatively affect a PV system’s behaviour and results, taking 
into consideration process controls. A risk is characterised by both the anticipated impact 
and the likelihood of negative outcomes.1

This approach also supports procedures to identify and reduce errors and biases in a way 
that is proportionate to their risk. It influences the implementation strategies of AI solutions, 
which should generally be commensurate with the identified risk.

Key messages

	— Integrating AI into PV processes needs to take into account that the performance of 
both AI algorithms, and humans, is imperfect.

	— The risks potentially associated with the use of AI in PV may affect patient safety, 
the trust and engagement of PV users, the efficiency of PV processes as well as 
compliance with regulatory standards and ethical principles.

	— By focusing efforts and resources where they most matter, a sound risk-based 
approach enables organisations to make the most of AI capabilities while ensuring 
that neither patient safety nor PV stakeholders are adversely affected.

	— The risk-based approach applies to the human oversight modalities, the validity and 
robustness strategy, the level of transparency, and the efforts to uphold fairness 
and equity, and data privacy.

	— The risk assessment should consider the AI system itself, the context of use, and the 
potential impact and likelihood of risks materialising.

	— A risk-based approach should be reviewed and adapted as needed at regular intervals 
and whenever changes in the system’s performance dictate so.

3.1.	 Introduction

3.1.1.	 Regulatory considerations
Regardless of the integration of AI elements, PV systems are expected to comply with 
existing regulations and GVP.2,3 In accordance with GVP, a wide range of PV processes 
are considered critical to achieving the goals and objectives of PV, including collection and 
handling of ICSRs, signal management, and periodic safety reports.6
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Regulatory frameworks generally recommend a risk-based approach in the development, 
deployment, monitoring, documentation and regulatory oversight of AI systems, to ensure that 
relevant risks are anticipated, identified and mitigated throughout the system lifecycle.4,5,6 
The EU AI Act7 introduces four risk categories for AI systems: low or minimal risk, limited risk 
(transparency obligations), high risk, and unacceptable risk (prohibited AI practices). High-risk 
AI systems, which include e.g. AI-based medical software/devices or AI systems used for 
staff recruitment, are associated with strict requirements and obligations on providers and 
deployers, including risk-mitigation systems, high quality data sets for training, validation and 
testing, logging of activity, detailed documentation, clear user information, human oversight, 
and a high level of robustness, accuracy, and cybersecurity. While the guiding principles 
advocated throughout this report overlap with the EU AI Act’s requirements for high-risk AI 
systems, determining the applicable EU AI Act’s risk category of an AI system considered 
for integration into an organisation’s PV process will likely require a careful case-by-case 
assessment, with legal advice as appropriate. Within the medicines’ lifecycle, EMA foresees 
AI systems with ‘high patient risk’ in use cases where patient safety is affected and AI 
systems with ‘high regulatory impact’ in use cases where impact on the regulatory decision 
making is substantial.8 The AIDA was developed to ensure the development of responsible 
AI in Canada, with a risk-based approach aligned with international norms, including the EU 
AI Act, the OECD AI Principles, and the US National Institute of Standards and Technology 
(NIST) Risk Management Framework (RMF).9

During development and other stages of an AI solution’s lifecycle, applicants and developers 
should consider engaging actively with regulatory authorities and seek suitable scientific 
advice, as relevant and depending on the level of risk to individual patients, public health or 
the regulatory decision making. Where necessary, technical qualification of the AI technology 
through appropriate channels should be sought based on legislative or regulatory requirements 
applicable to medicinal products, medical devices and/or software development.12,10 Due to 
its fast-moving nature, the use of AI technology in PV will pose challenges to both regulators, 
required to adapt and keep abreast of this evolving field,10 and industry PV stakeholders, 
required to maintain regulatory compliance (see Chapter 10 on Future considerations for 
development and deployment of artificial intelligence in pharmacovigilance).

3.1.2.	 Motivation and interplay with other guiding principles
While the integration of AI systems into PV processes may help address human errors, 
inconsistencies and limitations, it is associated with some risks and challenges. A sound, 
risk-based approach will allow organisations to focus their efforts and resources where 
they matter most to maximise their AI capabilities while ensuring that guiding principles are 
upheld, as described earlier.

A risk-based approach is applicable to, and influenced by, the other guiding principles presented 
in this report. Notably, a risk-based approach will inform where, when, how and how much 
human oversight should be implemented within PV processes involving AI in addition to other 
risk mitigation activities. Conversely, an AI solution may be risk-assessed taking into account 
the degree and nature of existing human oversight (see Chapter on Human oversight). A risk-
based approach should be applied to the testing and validation of AI systems (see Chapter 
on Validity & Robustness) and the level of documentation and record-keeping (see Chapter 
on Transparency). A risk-based approach is also relevant to data privacy and fairness and 
equity. For example, AI systems should be assessed for any risks that may affect specific 

  
C

H
AP

TE
R

 3
. R

is
k-

ba
se

d 
ap

pr
oa

ch
   

28
ARTIFICIAL INTELLIGENCE IN PHARMACOVIGILANCE



groups and cause them to be under-served or biased against, and those risks should be 
appropriately mitigated against (see Chapter on Fairness & Equity).

3.1.3.	 Types of risks
This section briefly outlines some of the risks potentially associated with the use of AI 
systems in PV.

Risks to patient safety and public health

Inadequate use of AI systems in PV, or their poor performance, may impede the fulfilment of 
PV objectives: detection, collection, assessment, understanding and prevention of adverse 
effects of medicinal products, which may come at the cost of patient safety, public health 
and compliance to regulatory requirements. Unreliable or inaccurate outputs produced by an 
AI system, including but not limited to false negatives or false positives, or unfair bias, could 
negatively impact PV activities with e.g. relevant AEs not captured, events misclassified during 
case processing, or signals missed. This could result in safety issues not being identified 
or being identified with delay, potentially putting patients at risk. In rare scenarios, the late 
detection of new, unexpected safety signals could have a major public health impact (e.g. 
‘Black swan’ events).11 An initially robust AI system could also start underperforming over 
time due to e.g. model drift, or become inoperative due to an IT incident or system failure, 
which would impede the PV activity that the AI system is intended to support.

Risks to user trust and engagement

The lack of transparency and interpretability of certain AI algorithms, or their use in tasks 
that are perceived as cognitively challenging for humans (e.g. causality assessment), 
may hinder trust and acceptance by users, including PV professionals12 (see Chapter on 
Transparency). Lack of trust from users may also result from previous poor experience 
with AI systems of insufficient validity and robustness, leading to mistrust of AI systems in 
general. In clinic-based PV settings, a more subtle potential source of mistrust is ‘uniqueness 
neglect’, in which patients prefer a human clinician over a more accurate computer due 
to a belief that machines do not fully accommodate their personal human uniqueness.13 
Other possible sources of mistrust include poor performance for certain subpopulations 
or failure to protect confidentiality of personal data during the development or operation of 
an AI solution. Conversely, some users may put excessive trust in AI solutions, leading to 
automation bias (especially if those have shown robust performance upon validation) and 
the resulting unconscious bias to accept erroneous outputs. Additionally, integrating AI 
solutions into existing workflows and systems may pose technical, organisational, and cultural 
challenges, with a risk of degraded job motivation or satisfaction in the absence of adequate 
training and change management strategies (see Chapter on Human oversight).

Risks to efficiency

Although the integration of AI in PV processes is generally aimed at increasing efficiency, 
substandard AI solutions may cause more manual work than they save, if for instance, 
significant time is required to understand and verify the AI outputs or bring them up to 
acceptable standards. Uncertainties, such as false positives, in interpretations and actions 
based on AI outputs might add to inefficiencies or suboptimal use of limited resources. It is 
also important to recognise that some PV problems may not require an AI solution.
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Other types of risks

Other risks include misalignment or misuse,14 and risks related to data privacy, cybersecurity, 
intellectual property, liability, or economic and reputational aspects.

The rest of this chapter mainly focusses on the impact that the use of AI systems in PV 
processes could have on patient safety. Other risks and challenges are further discussed 
in the chapters on Data Privacy, Fairness & Equity, Transparency, Human oversight and 
Governance & Accountability.

3.2.	 Risk assessment

3.2.1.	 General considerations
Organisations planning to deploy AI to support PV processes are expected to perform a 
thorough risk analysis. This assessment should be performed for each AI system and should 
form the basis for a risk-proportionate approach applied throughout the AI solution’s lifecycle 
from development to routine use.

When determining the level of risk related to the implementation of AI within a PV system, 
key considerations include the AI technology itself, the context of use, the likelihood of risks 
materialising, their detectability and their potential impact.

Artificial intelligence technology

The level of risk may depend on the type of system used (e.g. static vs dynamic model), 
the underlying data (type and quality), the novelty of the technology (i.e. risks may be better 
characterised with older approaches) or the maturity of the system (i.e. lifecycle stage).

Particular caution should be exercised with the integration of GenAI models within PV 
processes. Compared to simpler or more explainable AI approaches, the non-deterministic 
nature of GenAI and similar AI models, the opacity of training data and the potential for 
hallucinations (meaning the generation of outputs that may lead to seemingly coherent and 
convincing outputs that may be deceiving for humans-in/on-the-loop) may make the detection 
and mitigation of issues more challenging and require consideration of further guardrails 
(see Section on Risk mitigation). Multi-agent systems may carry specific risks linked to the 
autonomy individual agents are granted and to the inter-agent dependencies with potential 
cascading failures.15

As the AI landscape continues to evolve, so will AI-related risk areas. New risks may emerge 
while current challenges, including those associated with GenAI/LLMs may be addressed.

Context of use and degree of influence

These broadly refer to the place and importance of the AI solution within the overall PV 
system, including:

	— Whether or not the AI solution is used in a critical PV process or high-risk context 
(e.g. emergency Public Health use, novel substance, clinical trial cases);
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	— At which stage within a particular process the AI system intervenes (e.g. automated 
triage of relevant cases as a preliminary step to signal review) and whether the solution 
is assistive or directly supports a PV process;

	— The relative importance of the model outputs in the decision-making vs other information 
sources or activities;

	— The extent of human involvement and oversight in the process (see Chapter on 
Human oversight).

Impact and likelihood

Not all occurrences of system malfunction or suboptimal model performance are as likely, 
nor will they have the same impact. For instance, a duplicate detection solution applied to 
a very large database is not expected to detect 100% of duplicates but missed duplicates 
will have no or limited consequences in terms of patient safety, whereas the late detection 
of a very serious signal in a context of mass patient exposure happens very rarely but may 
have dramatic public health consequences (i.e. black swan event).

3.2.2.	 Examples of structured approaches
Risk-based assessment frameworks have been proposed in various domains and may provide 
inspiration to organisations wishing to deploy AI solutions within PV systems. Selected 
examples are briefly described hereafter.

Credibility assessment framework

The US FDA proposes a stepwise approach to demonstrate the credibility of AI models 
to produce information or data intended to support regulatory decision making regarding 
the safety, effectiveness, or quality of medicinal products (see also Chapter Landscape 
analysis).161 Similar frameworks have been proposed for the use of computational models in 
medical device submissions16 or drug development.17 The preliminary steps of the credibility 
assessment, as outlined below, help assess the model risk.

1.	 Define the question of interest: This describes the specific question, decision, or concern 
to be addressed by the AI model.

2.	 Define the context of use: this is a description of how the model will be used to address 
the question of interest, i.e. what will be modelled, how model outputs will be used and 
whether other information will be used in conjunction with the model outputs.

3.	  Assess the AI model risk: this is defined by (i) the contribution of the evidence derived 
from the AI model relative to other contributing evidence used to inform the question of 
interest, i.e. model influence; and (ii) the significance of an adverse outcome resulting 
from an incorrect decision concerning the question of interest, i.e. decision consequence. 
The ratings for decision consequence and model influence are independently determined, 
but are shaped by the context of use, thus enabling model risk to be case-specific. The AI 
model risk assessment involves subject matter expertise. As illustrated in Figure 4, the model 
risk moves from low to high as decision consequence or model influence increases.
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Figure 4:	 Model risk matrix
Source: U.S. Food and Drug Administration.161
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Algorithmic impact assessment

In Canada, the algorithmic impact assessment (AIA) tool18 is designed to help departments 
and agencies better understand and manage the risks associated with automated decision 
systems. It is composed of a multitude of questions that consider factors within risk areas 
(i.e. project, system design, algorithm, decision, impact and data) and mitigation areas (i.e. 
consultations and de-risking and mitigation measures), which contribute to an assessment 
score. The value of each question is weighted based on the level of risk it introduces or 
mitigates in the automation project. For the risk areas, there are 65 questions with a maximum 
score of 169, and for the mitigation, there are 41 questions with a maximum score of 75. 
The score percentage range determines the impact level of the automated decision system 
into four levels:

	— Level I – little to no impact (0% to 25%);

	— Level II – moderate impact (26% to 50%);

	— Level III – high impact (51% to 75%); and

	— Level IV – very high impact (76% to 100%).

The algorithmic impact assessment is required prior to the production of any automated 
decision system under the Directive on Automated Decision-Making.19

3.3.	 Issue detection and risk mitigation

Issue detection through continuous monitoring

Defining when to mitigate risk requires knowing how to detect issues based on a pre-defined 
risk-proportionate testing and verification plan which is laid out during the development of the 
AI system. Testing and verification are essential steps of Computerized System Validation 
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(CSV), which considers different levels based on AI system maturity. The latest version of 
the GAMP 5 of the International Society for Pharmaceutical Engineering (ISPE), a framework 
widely adopted by pharmaceutical companies and health authorities, contains an appendix 
focusing on AI and ML.20 Testing should be based on pre-defined key performance indicators 
(KPIs) and acceptance criteria, considering the human performance, and account for the 
identified risk areas, e.g. low quality data.

After the AI system has been proven fit for purpose and deployed, an ongoing process 
should be in place to monitor its performance and trigger mitigation measures when issues 
are detected.

A risk-based approach may be very conservative in the initial stages of deployment with 
additional pre-determined mitigation measures in place, for example, high percentage of 
human-in-the-loop (HITL). As confidence in the routine performance increases over time, based 
on pre-defined indicators and examination of sample outputs by human experts, a gradual 
reduction in the frequency, amount (e.g. number of samples) or depth of human controls 
may be considered. AI-assisted human oversight, i.e. the use of AI models to help monitor 
the main AI solutions, may also be considered (see also Chapter on Human oversight).

Reactive mitigation approaches

When issues or performance deviations are detected, risk-based mitigation measures 
may include:

	— HITL: Increased or full human review/quality control (QC), indefinitely or until performance 
levels are back within acceptance criteria, e.g. if a seriousness detection algorithm 
fails to detect seriousness criteria in some cases, i.e. false negatives, mitigation 
could involve reviewing all cases classified as non-serious until the issue is understood 
and addressed;

	— Model re-training: targeted re-training of the underlying models using recent or 
challenging examples;

	— Decommissioning of the system when mitigation options appear inefficient or costly, 
in which case alternative approaches should be considered.

Other (proactive) mitigation approaches

	— LLM-specific strategies, including grounding techniques such as retrieval augmented 
generation (RAG) or other guardrails against hallucinations21, or contingency protocols 
to address multi-agent system failures;

	— Articulation of the level of uncertainty or confidence scoring of AI outputs;16

	— Approaches to combat automation bias or complacency,22 e.g. mock data simulations 
or injection of simulated false positive outputs for verification / assessment in a 
training environment;

	— Red teaming approaches in very high-risk situations. Red teaming is when a group 
of people is authorised and organised to emulate a potential adversary’s attack or 
exploitation capabilities against an enterprise’s security posture. The Red Team’s 
objective is to improve enterprise cybersecurity by demonstrating the impacts of 
successful attacks and by demonstrating what works for the defenders (i.e. the Blue 
Team) in an operational environment. This is also known as Cyber Red Team.23
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The above aspects are further developed in the Chapters on Validity & Robustness, Human 
oversight, and Governance & Accountability.

3.4.	 Review and documentation of risk-based 
approaches

The risk-based approach should be reviewed and the oversight measures adapted as needed 
at regular pre-determined intervals or whenever the AI solution shows performance issues. 
The evolving nature of AI technology and the emergence of new technical options for risk 
mitigation also call for dynamic, adaptable approaches to risk assessment frameworks.

Finally, AI components, especially those deployed in critical PV processes, should be included 
in the organisation’s business continuity plan. The aim is to ensure that the PV system’s 
objectives and regulatory compliance are maintained in case of failure or performance 
degradation of the AI solution.

The key components of the AI-related risk management strategy should be documented (see 
also Chapter on Transparency), including:

	— AI system risk assessment;

	— Testing plan with KPIs, acceptance criteria and results of testing and validation 
activities including any comparative assessments;

	— Planned mitigation measures including human oversight strategy and criteria for more 
stringent or reduced QC, and continual monitoring after deployment;

	— Plans for periodic re-assessment and update of the risk management strategy;

	— Business continuity plan.
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Chapter 4.  
HUMAN OVERSIGHT

Principle

Human oversight refers to the expected role of humans in the design, implementation, 
monitoring, and analysis of AI systems in PV. It requires a framework to manage performance 
and to detect and mitigate potential issues related to the AI solution.

Key messages

	— Human oversight supports the optimisation of the performance of AI systems deployed 
in PV and increases trustworthiness and accountability.

	— The extent and nature of human oversight for an AI system should follow a risk-
based approach.

	— Quality assurance (QA) principles should apply to the conduct of the human oversight 
of AI solutions in PV.

	— The increased use of automation and AI to support PV processes will require redefining 
skillsets to integrate AI with human expertise, ensuring robustness and reliability in 
decision-making processes. This will lead to a transformation of traditional roles and 
competencies that requires appropriate change management and training strategies.

4.1.	 Introduction

4.1.1.	 Motivation
Human oversight is required to minimise the risk that an AI solution undermines human 
autonomy or causes other negative or unintended effects.1 The principle of protection of 
human autonomy requires that humans remain in control of the AI systems.2 Human agency 
and oversight are key requirements of trustworthy AI according to several regulatory 
frameworks, including the Assessment List for Trustworthy Artificial Intelligence (ALTAI), 
the EU AI Act, and the Canadian AIDA, for high-risk systems4,3,4 (see also Chapter on 
Landscape analysis). Although human review by itself does not guarantee full accuracy of 
outputs, human oversight is essential to monitor the performance of AI systems and make 
corrections if needed, thereby increasing trustworthiness and human accountability for the 
AI system, especially in some high-risk applications.

AI systems are often intended to help eliminate manual, labour-intensive or complicated 
work performed by humans, or to enhance human performance when used as intelligence 
augmentation tools. However, due to the complexity and sensitivity of certain PV tasks, 
and the complex and variable nature of PV data, AI components will exhibit increasingly 
good but imperfect performance. This may require more extensive human intervention 
during the development, evaluation and deployment of some AI systems in PV to monitor 
and mitigate risks.
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A key challenge and important starting point for defining an AI QA approach is to strike a 
balance between the efficiency boost that an AI solution is intended to provide and the level 
of human intervention that may be required to ensure a high-quality output. In plain words, 
ideally a human expert should not do work that a machine can do well, and a machine should 
not do poorly the work that a human expert can do well.5

Human oversight is fundamental to a sound risk-based approach (see Chapter on Risk-based 
approach). The level of monitoring of the performance of AI solutions by humans should 
be proportional to the potential impact of an undetected mistake or spurious output by the 
AI system.

4.2.	 Considerations on human involvement and 
oversight

4.2.1.	 Multidisciplinary expertise
The successful integration of AI systems into PV systems requires that multidisciplinary 
human expertise is mobilised as appropriate throughout the lifecycle of the solution, 
from development to routine use. This multidisciplinary expertise is usually obtained through a 
close collaboration between domain experts, which may include, as applicable, PV professionals, 
QA staff, data scientists, statisticians, AI/ML engineers, data engineers, prompt engineers, 
IT specialists, cybersecurity experts, platform analysts, software engineers, ethics specialists, 
legal experts, data protection officers, project managers, senior management, etc. (see 
also Chapters on Validity & Robustness and Governance & Accountability).

PV professionals, i.e. staff performing core tasks in ICSR management, signal detection 
and analytics or risk management, hold robust ‘domain’ or ‘subject matter’ expertise, which 
is instrumental to the effective integration of AI capabilities into PV processes. As such, 
PV professionals should be engaged in the design, development, pre-deployment and testing/
piloting/revisions of AI systems to ensure that the systems are fit for purpose and widely 
accepted by the end-users that the PV professionals themselves will ultimately be.

4.2.2.	 Mechanisms of human oversight
Human oversight may serve different objectives and be achieved through governance 
mechanisms at different stages.6 There are various possible approaches based on the activity 
monitored and how much autonomy is granted to an AI system. Depending on the scope, 
extent and intensity of human intervention, the European Commission’s Ethics Guidelines 
for trustworthy AI describe three main governance mechanisms: HITL, human-on-the-loop 
(HOTL) and human-in-command (HIC). HITL refers to the capability for human intervention in 
every decision cycle of the AI system. HOTL, which foresees a higher autonomy of the AI 
system, refers to the capability for human intervention during the design of an AI system and 
monitoring of its operation. The concept of ‘human on many loops’, a special case of HOTL, 
addresses the scalability of monitoring multiple AI models.7 HIC refers to the capability to 
oversee the overall activity of an AI system, including its broader economic, societal, legal 
and ethical impact, and the ability to decide when and how to use an AI system. This may 
include the decision not to use an AI system in a particular situation, to establish levels of 
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human discretion during its use, or to ensure the ability to override a decision made by the 
system.6 The delineations of these three terms may vary according to sources9 and their 
practical implementation may differ according to individual organisations and use cases. 
As an example, after the decision has been made to build an AI system to support a PV 
process (HIC), human oversight may be exercised as early as during the development phase 
to help define the system’s context of use or support the identification or development of 
reference datasets (HOTL) and, when deployed, to perform QCs of the system (HOTL) or as 
part of its execution in case of a semi-automated system (HITL).

As a rule, some level of human oversight is always required and the absence of a human-
in/on-the-loop in any major or supporting PV process should be substantiated by a risk 
assessment, with risk mitigation measures in place.

4.2.3.	 Monitoring and interacting with deployed artificial 
intelligence systems

The level, frequency, means and modalities of human intervention required to monitor and 
interact with AI systems depend on the complexity of the task, the risks associated with 
suboptimal outputs, the type of AI system, and its performance (see Chapters on Risk-
based approach and Validity & Robustness). As experience with AI evolves, further clarity, 
guidance, and consistency in assessing these factors are likely to develop. As suggested 
above, the respective roles of the human and AI components in a particular process could 
be seen as a continuum, from an AI system merely performing preparatory work to support 
assessment and decision making by a human, to a near-fully automated system merely 
monitored by a human who performs QCs. Intermediate approaches may also be envisaged 
where, for instance, an AI system flags cases it struggles with to a human specialist.

The metrics and KPIs used to monitor the performance of deployed AI solutions should be 
pre-defined as part of the testing and validation plan (see Chapters on Validity & Robustness 
and Risk-based approach).

In situations where the standalone performance of an AI system is suboptimal (e.g. if it cannot 
match the established human performance), in complex or ambiguous cases, or when the 
associated risks are unacceptably high, one or more manual process steps must be considered, 
with a human fully in control of the final output. Even when a static AI-based system exceeds 
human performance upon validation, monitoring after deployment is still recommended to 
ensure that the performance does not fall below acceptable levels over time (see Chapter 
on Validity & Robustness). Each time an AI system undergoes modifications, human oversight 
should be directed at the change i.e. change-specific samples should be prioritised.

There are different ways the performance of an AI solution can be monitored once deployed. 
In a static AI system, one could perform a retrospective analysis by checking a sample 
or the totality of generated outputs against expected outputs (see Chapter on Validity & 
Robustness). This may be followed by post hoc corrections and re-training or re-validation 
of the model. A more dynamic real-time, in-process interaction can also be envisaged where 
independent human assessment is applied to confirm or correct the AI output in a decision-
support setting. In such a dynamic AI application, the interaction provides an opportunity 
for immediate feedback to the algorithm to continuously learn and adjust if needed. Running 
an independent model in parallel to the main AI system may also be an option in a one-off 
or continuous manner (AI-assisted human oversight).
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Caution is required in the monitoring of GenAI/LLM-based systems. Humans-in/on-the-loop 
should be aware of the inherent variability of outputs, limited explainability and risk of 
hallucinations, and not overly rely on the AI system’s results. Processes must be robust, 
demonstrated to be effective, and maintain their dependability even in the event of erroneous 
outputs. Hallucinations, specifically, may lead to seemingly coherent and convincing outputs 
that may be deceiving for humans-in/on-the-loop. Regardless of the underlying AI technology, 
PV professionals should be empowered to challenge the system’s outputs based on their 
experience and avoid falling for automation bias. On the other hand, they should be aware 
of the possibility of confirmation bias and remain open to the possibility that an AI output, 
albeit unexpected, is correct. AI systems with high performance may also warrant specific 
monitoring strategies as humans are more prone to miss very rare errors than frequent 
ones (‘low prevalence effect’).8

4.3.	 Transformation of traditional roles
As the PV landscape continues to embrace AI capabilities, a reduced dependency on large 
workforces with PV expertise is expected due to the replacement of some of the activities 
traditionally performed by PV professionals. Indeed, the increased use of automation and AI 
within PV processes will unburden PV professionals from certain repetitive, time-consuming, 
manual activities. This may render certain roles obsolete and thereby reduce the size, 
diversity and experience of the PV workforce, not unlike the impact on staff observed when 
organisations offshore activities. On the other hand, the fast-evolving pace of AI capabilities 
and the dynamic nature of AI performance may make it challenging for organisations to 
accurately forecast staffing needs and maintain optimal and sustainable human resource 
models. The evolving landscape may create legitimate concerns and anxiety about job 
displacement and employment prospects in the PV space, but also around work culture, 
motivation and fulfilment. Perceived unfairness may also ensue from the fact that some AI 
models are trained using historical datasets and documented decisions based on the work 
originally performed by PV professionals.

On a brighter side, the introduction of AI in PV brings opportunities for growth for PV 
professionals. With fewer menial time-consuming tasks, PV experts will be able to focus on 
more scientifically complex and intellectually stimulating PV activities. In addition, the business 
needs associated with AI systems will bring new roles in governance and human oversight. 
As mentioned earlier, PV professionals will be increasingly involved in the testing, evaluation, 
implementation, oversight and use of AI models. They will often be best placed to identify 
those activities in need of automation and suggest AI use cases accordingly. They may 
participate in design and development activities including model training and validation, 
participate in user acceptance testing, manage the challenges of automating and modifying 
existing processes, perform monitoring and QC activities, identify and resolve issues related 
to inconsistent assessments, and interact with automation experts and vendors.

Contributing to the development, use, and maintenance of AI systems will allow PV professionals 
to evolve with the changing PV landscape, but this will require that they extend their skillsets 
beyond core PV competencies.9 These new skills include specific competencies around the 
use of the new systems and the critical evaluation of their outputs, as well as more general 
literacy around data science and AI, including a good understanding of AI capabilities, risks 
and limitations. Regulatory frameworks such as the EU AI Act impose an obligation on 
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organisations to ensure a sufficient level of AI literacy of staff operating or using deployed 
AI systems.6

Beyond PV professionals, staff working in QA also need to develop an understanding of 
the organisation’s human oversight strategy and of approaches to validating AI systems, 
to ensure that human oversight activities are adequate. Likewise, AI experts involved in the 
design and development of AI in PV solutions will need to develop an understanding of PV 
processes and the implications of operating in a regulated environment.

Change management and readiness strategies are a key responsibility of organisations, 
which should put PV staff at the centre of role redefinition and upskilling opportunities. 
Adequate change management and training plans are a pre-requisite to a seamless, safe and 
successful integration of AI systems into PV processes, with a wide engagement and adoption 
by staff and smooth interactions between various roles (see also Chapter on Governance 
& Accountability). Structured competency development programs with defined learning and 
career progression frameworks should be considered.

Training programs should be carefully crafted, documented and evaluated so that their 
content and format (including materials and methods) meet the learning needs of the target 
audience (e.g. PV end-users, QA staff, AI experts). Cross-functional training between e.g. 
PV professionals, data scientists, and QA teams may be a worthwhile approach. Human training 
in a decision-support context is an approach that may be drawn on to train staff monitoring 
and interacting with AI systems. It generally refers to programs designed to educate staff to 
use specific tools and make informed decisions effectively. This involves not only showing 
staff how to use the software front-end but also explaining the back-end functionalities and 
helping them build the skillset for critically evaluating the automated output. For example, 
staff should be trained on identified areas where the system’s outputs may require human 
review or decision, due to known limitations. Training modalities (e.g. classroom-based vs 
online, live vs asynchronous) should be adapted to the system’s complexity, limitations, 
the supported use case or task including decision and action points and the specific needs 
of the organisation or the individual.10,11,12,13

Chapter 4 – References
1	 European Commission. Ethics guidelines for trustworthy AI. [Internet]. Brussels: European Commission; 2019 

[Internet]. Brussels: European Commission; 2019. (Webpage accessed 21 March 2025) 

2	 World Health Organization (WHO). Ethics and governance of artificial intelligence for health: WHO guidance. 
Geneva: World Health Organization; 2021. (PDF accessed 19 September 2025)

3	 European Parliament, Council of the European Union. Regulation (EU) 2024/1689 of the European Parliament 
and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence and amending 
Regulations (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1139 and 
(EU) 2019/2144 and Directives 2014/90/EU, (EU) 2016/797 and (EU) 2020/1828. Off J Eur Union. 2024;L 
1689:1-159. (Webpage accessed 21 March 2025)

4	 Government of Canada. The Artificial Intelligence and Data Act (AIDA) – companion document. [Internet]. Ottawa: 
Government of Canada; 2022 (Webpage accessed 21 March 2025) 

5	 Ball R, Dal Pan G. “Artificial Intelligence” for Pharmacovigilance: Ready for Prime Time?  Drug Saf. 2022;​
May;45(5):429‑438. https://doi:10.1007/s40264-022-01157-4 (Journal full text)

6	 Enqvist L. ‘Human oversight’ in the EU artificial intelligence act: what, when and by whom? Law, Innovation and 
Technology. 2023;Jul3;15(2):508-535. https://doi.org/10.1080/17579961.2023.2245683 (Journal full text)

7	 Hillis JM, Payne K. Health AI needs meaningful human involvement: lessons from war. Nat Med. 2024;30:3397-
3398 https://doi.org/10.1038/s41591-024-03311-0 (Journal abstract)

C
H

APTER
 4. Hum

an oversight   

41
ARTIFICIAL INTELLIGENCE IN PHARMACOVIGILANCE

https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://iris.who.int/bitstream/handle/10665/341996/9789240029200-eng.pdf?sequence=1
https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng
https://ised-isde.canada.ca/site/innovation-better-canada/en/artificial-intelligence-and-data-act-aida-companion-document
https://doi:10.1007/s40264-022-01157-4
https://link.springer.com/article/10.1007/s40264-022-01157-4
https://doi.org/10.1080/17579961.2023.2245683
https://doi.org/10.1038/s41591-024-03311-0
https://www.nature.com/articles/s41591-024-03311-0


8	 Rich AN, Kunar MA, Van Wert MJ, Hidalgo-Sotelo B, Horowitz TS, Wolfe JM. Why do we miss rare targets? Exploring 
the boundaries of the low prevalence effect. J Vis. 2008;Nov1;8(15):15. https://doi.org/10.1167/8.15.15 (Journal 
full text)

9	 Danysz K, Cicirello S, Mingle E, Assuncao B, Tetarenko N, Mockute R, et al. Artificial Intelligence and the Future 
of the Drug Safety Professional. Drug Saf. 2019;Apr;42(4):491-497. https://doi:10.1007/s40264-018-0746-z. 
(Journal full text)

10	 Keen PG. Decision support systems: a research perspective. In: Decision Support Systems: Issues and 
Challenges. Proceedings of the International Institute for Applied Systems Analysis (IIASA) Conference Series. 
1980;Jun23;11:23-27. (E-book abstract accessed 15 October 2025) 

11	 Wang RY. A product perspective on total data quality management. Communications of the ACM.1998;Feb1;41(2):58-65. 
https://doi.org/10.1145/269012.269022 (Journal full text)

12	 Power DJ. A brief history of decision support systems. DSSResources.com. 2007;Mar10;3. (Webpage accessed 
21 March 2025)

13	 Turban E. Decision support and business intelligence systems. New Delhi: Pearson Education India; 2011.

  
C

H
AP

TE
R

 4
. H

um
an

 o
ve

rs
ig

ht
   

42
ARTIFICIAL INTELLIGENCE IN PHARMACOVIGILANCE

https://doi.org/10.1167/8.15.15
https://doi.org/10.1167/8.15.15
https://link.springer.com/article/10.1007/s40264-018-0746-z
https://doi.org/10.1145/269012.269022
https://dl.acm.org/doi/abs/10.1145/269012.269022
https://dssresources.com/history/dsshistoryv28.html


Chapter 5.  
VALIDITY & ROBUSTNESS

Principle

Validity means that a system achieves its intended purpose within acceptable parameters. 
It requires predefining acceptable performance levels, selecting appropriate data for model 
training and/or testing, assessing model performance in a realistic setting, and integrating 
the system into an ongoing QA process.

Robustness means that a system reliably achieves its intended objectives (while accounting 
for variations in data).

Key messages

	— PV professionals and decision makers must learn to critically appraise AI systems 
whether they acquire them or participate in their development.

	— A performance evaluation able to demonstrate acceptable and robust results for the 
intended use under realistic conditions is crucial. Such an evaluation should cover a 
wide enough range of relevant examples to interrogate the AI model’s objective and 
is often based on statistical metrics.

	— There should be a focus on looking to ensure sufficient representation of relevant 
types of data in the test set(s) to detect biases, promote adequate and generalisable 
performance across the intended deployment domain, assess usability, and identify 
circumstances where the model may underperform.

	— Many PV applications focus on recognition of rare events or patterns (e.g. safety 
signals and duplicates) and may require enrichment of test sets with the event of 
interest. If so, special care should be taken to attempt to ensure that performance 
evaluation results generalise to real-world settings.

5.1.	 Introduction
Ensuring the validity and robustness of AI solutions is central to ensuring patient safety, 
building trust and achieving the best possible value for end-users. To invest resources 
optimally, PV professionals and decision makers must learn to critically appraise and evaluate 
proposed AI systems regardless of whether they develop them in-house or acquire them 
from other organisations. This requires familiarity with basic principles for performance 
evaluation and some of the common pitfalls that may mislead expectations on real-world 
performance in prospective use.

AI models will often be embedded in broader computer systems supporting the PV use case. 
These should be subjected to general computer system-validation according to standard 
practices for the organisation. In general, this will be considered separately from ensuring 
the validity and robustness of the core AI model (and is out of scope for this document). 
However, some special considerations regarding validation of systems that include dynamic 
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AI models that continually learn from and adapt to incoming data are presented in the 
Section on Continuous integration and deployment. Our focus will be on key considerations 
related to establishing the validity and robustness of AI models themselves, including their 
dependency on underlying data for training and deployment and the need for probabilistic 
/ statistical performance evaluation.

The nature of PV data may in some instances impact the ability and approach to leveraging 
AI. AI models depend heavily on the quality of the data they are trained on and the data 
they use for ongoing predictions. PV data suffer from inconsistencies, incomplete entries, 
and inaccuracies, and may vary substantially depending on the source. For example, 
the contribution of AE reports is for the most part voluntary, and reporting practices vary 
over time, between organisations and types of reporters. This may impact the types of AEs 
that are reported, which information is captured, and how it is encoded. Inconsistencies 
and inaccuracies can lead to models that are less accurate, and systematic variability can 
reduce the generalisability of AI models to adjacent domains and make them more sensitive 
to data drift. They may also make it more difficult to ensure consistent performance across 
regions and organisations (see also Chapter on Fairness & Equity).

Generally, the variable quality and consistency of AE reports and the complex nature of 
the studied drug-event relationships may require more extensive human involvement than 
in other domains to ensure the validity and robustness of AI solutions for PV (see also the 
Chapter on Human oversight). The practice of PV is subject to regulation, and regulatory 
expectations regarding validity and robustness may differ from those of the business itself.

Performance evaluation and testing are crucial considerations in ensuring the validity and 
robustness of AI models and the focus of this chapter. It will usually be more effective to 
account for the same considerations also during development and training of AI models. 
For example, bias mitigation for ML classifiers1 may improve performance and so may cost-
sensitive learning when different types of errors are associated with different costs.2,3 At 
the same time, it may not be necessary or feasible to do so to achieve good performance. 
For example, LLMs can be capable of zero-shot learning, with solid performance on language 
tasks for which they have not been specifically trained. Also, PV organisations may be offered 
already developed AI systems where they cannot influence AI model development. In all these 
scenarios, it remains important to ensure and demonstrate adequate performance on the 
relevant tasks in independent testing with conditions reflecting the intended use.

5.2.	 Specification and design

5.2.1.	 Use case and deployment domain
The intended use case and deployment domain for AI solutions in PV should be clearly 
defined, and the performance evaluation targeted to these, as far as possible. For example, 
in evaluating methods for PV signal detection, historical safety signals would typically be a 
more relevant basis for performance evaluation than well-known, already labelled adverse drug 
reactions since their reporting patterns differ in important ways4. Similarly, if an AI model for 
recognising AEs in free text is intended for broad use, its evaluation should include reports 
related to various medicinal products and AEs, from both patients and health professionals, 
in relevant languages, etc. Ideally, there should be sufficient representation of relevant types of 
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data in the training and test sets to promote adequate and generalisable performance across 
the intended deployment domain, assess usability, detect biases, and identify circumstances 
where the model may underperform. For more capable AI systems, it may also be relevant 
to specify refusal policies which determine which tasks the system will permit and refuse.

Design of AI systems may also account for an AI model’s susceptibility to overfitting, 
computational complexity and robustness to outliers, especially if test sets will not be large 
and diverse enough to reliably capture their impact during performance evaluation. Complex 
methods highly dependent on skilful design and deployment by human experts may not 
readily transfer to similar application areas without access to the same expertise. In routine 
deployment, one is less concerned about whether one method is theoretically better than 
another but rather with which one is likely to perform best for a given purpose, irrespective 
of what design/analytical choices one made.

5.2.2.	 Multidisciplinary collaboration
Ensuring the validity and robustness of AI models often requires collaboration across 
disciplines, including not only PV decision makers and practitioners, but also for example, 
data scientists and AI experts, and individuals with experience in computer systems validation. 
Diverse perspectives and expertise, in-depth understanding of a model’s intended integration 
into the PV system and defined desired benefits and associated risks can help ensure that 
deployed AI solutions are effective, and address identified needs over their lifecycle.

AI systems addressing the complex relationships between drugs and AEs often require a 
HITL, especially in view of the variable quality and provenance of the underlying PV data. 
AI outputs in such applications need to be interpreted considering the broader clinical 
context, known pharmacological mechanisms, and possible alternative explanations that 
are central to causality assessment5,6 but which may not be captured in the data at hand 
and that the AI might not fully account for. Human intervention ensures that the final output 
is clinically meaningful and scientifically sound. On the other hand, more basic tasks such 
as redaction of personal data or drug and AE encoding may lend themselves to automation 
with minimal human intervention.

5.2.3.	 Definition of reference standards
Test sets must be aligned with the intended deployment domain(s) and able to demonstrate 
performance under realistic conditions. Reference standards relevant to the intended use 
need to be clearly defined and kept up to date. In many PV applications, these may be 
based on human execution of the task in question, in which case a set of real examples 
may be classified (annotated) by a human specialist. Approaches to mitigate inconsistencies 
in such annotations are often required, for example by having multiple human assessors 
annotate (parts of) the same data. When legacy human annotations are used as the reference 
standard, efforts should be made to clarify the definitions of relevant categories in the 
reference standard retrospectively, and to ensure that all included historical annotations 
adhere to these standards and are relevant for the intended future use. This may require 
the omission of available annotations that were developed following outdated principles or 
were based on different types of data. If reference standards are to be developed de novo, 
an explicit annotation guideline is recommended. This in turn may require a strengthening 
and clarification of existing processes and guidelines for human execution of the PV task of 
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interest, sometimes bringing value by harmonising and making explicit decision processes 
that may otherwise remain implicit and variable within an organisation. Based on the size 
and scale of the project, special care may be required to ensure that annotations of the test 
set used for performance evaluation are independent of the development of the AI model; 
for example, annotations may be performed preferably by individuals blinded to the specific 
AI model to avoid conflicts of interest and confirmation bias. Similarly, if testing human-AI 
teams, the qualifications of human team member(s) should match those of the intended use 
case and deployment domain.

Sometimes, boundaries between reference standard categories are not clear, which yields 
additional sources of possible ambiguity. For example, different organisations may have 
different internal conventions regarding how strong the conviction should be that two AE 
reports refer to the same event for them to be classified as suspected duplicates. This may 
vary even within an organisation depending on the intended use case; for example, one may 
cast a wider net in highlighting suspected duplicates if each highlighted pair will be reviewed by 
a human before action and be more conservative if suspected duplicates will be automatically 
removed prior to statistical signal detection. Similar ambiguities exist in NLP tasks seeking 
to map free text to standard terminologies such as MedDRA where there may be multiple 
acceptable terms/codes for a specific verbatim, and it may be inappropriate to treat terms 
adjacent to the reference standard annotation as false positives. The ambiguity is even more 
pronounced for signal detection and causality assessment tasks, where human experts may 
often disagree on whether there is sufficient evidence of a causal association between a 
drug and an AE (at a given point in time).

A general challenge in PV has been ensuring sustainable and reusable access to reference 
sets. The potential for widespread impact of AI solutions in PV underscores the importance 
of maintaining up-to-date, accessible reference standards with clarity on how they were 
developed and related assumptions.

5.3.	 Performance evaluation
Performance evaluation is necessary for critical appraisal of AI models. The ability to carry 
out or assess performance evaluations are crucial skills for those who develop AI systems 
and for those to whom AI systems are proposed.

Many of the metrics relevant to performance evaluation for AI models in PV come from 
information retrieval and apply primarily to use cases that can be viewed as binary 
classification tasks. In binary classification, we may refer to those instances that we want 
a method to retrieve as positive controls and those that we do not want it to retrieve as 
negative controls. We use this terminology throughout the description below (sometimes 
replacing positive controls by target events), acknowledging that other use cases may require 
different frameworks of evaluation, for example considering ranked orderings, unsupervised 
learning, or content generation.

AI systems, like humans, will typically not achieve perfect performance on more complex 
classification tasks. In fact, there can be an inherent ambiguity as to what is the correct 
classification of some instances in real-world applications also for domain experts (e.g. 
for lack of information). Therefore, performance is typically assessed statistically for a 
sample of cases referred to as the test set. Recall measures how many of the target events 
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are correctly identified (recalled) by the AI solution. Sensitivity is a synonym. Precision 
measures the proportion of target events among all events highlighted by the AI solution. 
Positive predictive value (PPV) is a synonym.

The balance between precision and recall (and correspondingly between sensitivity and 
specificity) can typically be tweaked and should be determined based on the relative costs of 
different types of errors (and utilities associated with correct decisions). Composite metrics like 
the F1 score (the harmonic mean of precision and recall) provide single-dimensional measures 
of predictive accuracy accounting for both precision and recall under some assumptions 
(for the F1 score that precision and recall are of equal importance and false positives as 
costly as false negatives). Test sets need to be large, diverse, and representative enough 
to reflect a sufficient portion of the intended deployment domain and to provide statistically 
robust estimates of performance. They should include different populations and consider 
possible scenarios in line with the intended use.i

Since the primary interest is the expected performance of an AI solution in prospective 
use (as part of an overall system), performance evaluation should be independent of any 
data directly used during its development (this is in addition to any cross-validation or other 
separation of data for training and validation during development). Any user-driven design 
decisions should be fixed and finalised before AI model developers first access test sets. This is 
especially important for more complex methods with numerous analytical choices regarding 
model architecture, hyper-parameters, and model initialisation.7 Various potential sources 
of dependence between development and evaluation should be considered and eliminated, 
the most obvious being the risk that the same individual data points are considered in both 
phases. More subtle forms of dependence, can occur and lead to optimistic performance 
estimates, for example there may be a disproportional overlap in scope between the training 
and test sets compared with the deployment domain e.g. if training and test sets cover the 
same subset of drugs and AEs, and the deployment domain is broader.8

5.3.1.	 Benchmarking
Ideally, performance should be compared against relevant benchmark methods, if available. 
For example, AI-based signal detection methods may currently be compared against standard 
disproportionality measures, if this is an organisation’s baseline method. In the case of more 
complex benchmark methods, including those based on AI models, special care must be 
taken to ensure that the benchmark methods have been appropriately instantiated and fine-
tuned to the task at hand to serve as a relevant comparator.

When public benchmark test sets exist, performance may be evaluated against these, ideally 
as a complement to performance evaluation targeted to the deployment domain of interest. 
At present, public benchmarks exist only for some specific applications in PV. They include 
sets of emerging safety signals,9,10 sets of established adverse drug reactions,11,12,13,14,15 
and clinically relevant drug-drug interactions.16 However, continual access to benchmark 
reference sets over time can be a challenge and the degree to which they are maintained 
and kept up to date varies.

To complement overall performance estimates, subgroup analyses can provide useful 
information on the strengths and weaknesses of the AI model for different parts of the 
deployment domains (See also Chapter on Fairness & Equity). Along the same lines, sensitivity 

i	 For a continually updated inventory, see for example https://oecd.ai/en/catalogue/metrics
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analyses can help assess the robustness of the AI model and its evaluation to variations in 
specification and design.

5.3.2.	 Special considerations for low-prevalence settings
Many PV applications focus on recognising rare patterns and events. For example, in a case 
retrieval task most reports will typically not be relevant for a given topic, such as pregnancy, 
medication errors, positive rechallenge interventions, or drug-induced liver injury. Similarly, 
for PV signal detection, most drug-event combinations are not true adverse drug reactions, 
let alone recently detected safety signals. Managing and analysing these rare events 
effectively requires reliable reference datasets, however, existing resources, such as SIDER, 
are often limited by outdated and static information, underscoring the need for alternative 
solutions.17 As an even more extreme example, pairs of duplicate reports are vanishingly 
rare among all possible pairs of reports in large collections of individual case reports – if 
10% of the reports in a database of 1 million reports have a (single) duplicate, the chance 
that a randomly selected pair would be duplicates is only 1 in 10 million.ii

This low prevalence of positive controls (i.e. class imbalance) limits our ability to achieve 
accurate performance evaluation and requires special care and consideration. A balance may 
need to be struck between the quality of each annotation and the resulting size of the test 
sets (or the cost/time to develop them), for example related to whether double annotations 
by multiple assessors are feasible to increase quality or evaluate consistency. Moreover, 
straight random samples of test cases often contain too few positive controls whereas test 
sets enriched with positive controls can lead to misleading estimates of precision and recall. 
For a deeper elaboration regarding this, see for example Norén et al 2025.18

If heuristics are used to increase the proportion of target events in the test set, then recall 
may be over-estimated since target events which are harder to identify for the AI model, 
may less likely be included in the test set. This does not mean that rebalancing approaches 
should necessarily be avoided but if they are used, this should be acknowledged and 
critically assessed.

Similarly, precision is highly dependent on the prevalence of target events in the test set, 
and if test sets have been enriched with target events, naive test set precision estimates 
will be optimistic as the baseline prevalence of the target event is inflated. For reliable 
precision estimates, the prevalence of positive controls in the test sets should match 
as far as possible that of the intended deployment. For a specific AI model, precision is 
straightforward to estimate by applying the AI model to a random sample and annotating 
all highlighted instances. However, such test sets for precision are tied to the AI model in 
question and will need to be developed again, or at least extended, if the model is modified. 
They are not useful to estimate recall.

Estimates of precision and recall depend on the selected decision threshold, and performance 
evaluation should be targeted at decision thresholds relevant to the intended deployment 
domain, i.e. with a relevant balance between false positives and false negatives.

ii	 0.10 × 1/106
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5.3.3.	 Beyond summary statistics
Summary statistics as captured by the metrics described in the previous section go only 
so far in enabling us to assess and understand the performance of an AI model. Access 
to and ability to inspect representative, concrete examples of an AI model’s classification 
of individual instances in a test set is also important. Examining false positives and false 
negatives in an error analysis step can each give useful insights regarding the strengths 
and limitations of the AI solution and its evaluation. For example, if a false negative in de-
identification corresponds to a full name preceded by ‘Mr’ which has not been redacted 
by the method, this may undermine end-users’ trust in the solution, even if overall recall is 
excellent, because the error seems trivial. On the other hand, if the false negative is ‘AF’ and 
it is hard to know, even for a domain expert, from the surrounding text if these are initials or 
an abbreviation for atrial fibrillation, then one should perhaps consider the overall precision 
metric to be conservative. Review of correctly classified instances may in turn give insights 
regarding an AI system’s capacity to solve challenging tasks. Does it correctly classify more 
difficult cases or just the trivial ones? This may be especially important when there is no 
baseline comparator method, and we may not understand from overall performance metrics 
the difficulty of the task at hand. When there is a baseline comparator method, one may 
review instances that are differentially classified by the two methods, to better understand 
the nature of any improved performance of the proposed solution over the comparator.

5.3.4.	 Unsupervised learning
For AI systems performing unsupervised learning like cluster analysis, patterns are identified 
in a data-driven manner without access to human-annotated reference sets. They require 
other approaches to performance evaluation. In some cases, one may rely on human 
subjective review and assessment of the AI output, but then potential cognitive biases must 
be considered and mitigated. A possible solution may be to present the results of several 
different AI models to a blinded, domain expert and ask which one they prefer. There are 
also performance evaluation approaches specifically designed for unsupervised learning like 
intruder detection analysis where domain experts are asked to spot an unrelated “intruder” 
among items an AI model has grouped as related, and coherence is measured by the intruder 
detection rate.19

5.3.5.	 Generative output
GenAI models can create open-ended, often longer, pieces of text (or other content) that 
may be used without restriction or further post-processing into a pre-defined set of options 
(e.g. yes/no or MedDRA Preferred Terms). Examples of such applications include text 
summarisation, translation, report generation, and lay-language rewrites. There typically does 
not exist a single correct output and aspects of the text such as fluency and coherence may 
need to be evaluated along with task-specific metrics. This is a rapidly evolving field and at 
the time of writing; multiple evaluation metrics are often used in parallel. For example, generic 
metrics for readability and toxicity may be obtained, and when a ground truth reference text 
exists (e.g. for translation or summarisation tasks), measures of syntactic (e.g. Bilingual 
Evaluation Understudy or BLEU) or semantic (e.g. BERT score) text overlap can be computed. 
Similarly, retainment of key entities can be measured against human-annotated reference 
sets, if available. Human evaluation may also be obtained prospectively but should then 
be designed and executed with care, as in the context of unsupervised learning discussed 
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above; pairwise preference testing or evaluation of success rates for human task execution 
supported by an AI system output are among the options. While human evaluation remains the 
gold standard, generative LLMs can also be prompted to rate AI system outputs on various 
dimensions as part of a holistic performance evaluation. Such LLMs-as-a-judge approaches 
scale well but require a strong evaluator model that should ideally be distinct from the model 
under evaluation, and human calibration is typically required. Recent examples of performance 
evaluation for GenAI applications in PV include that of summarising AE reports20 and that 
of LLM-generated clinical reasoning in the context of individual case causality assessment 
for COVID-19 vaccine reports.21

5.3.6.	 Non-deterministic systems
A deterministic AI system will always generate the same output for a given input. Predictive 
models like support vector machines and decision trees are of this nature. So are certain 
LLMs (e.g. masked encoders like BERT) and other deep neural networks used for classification 
tasks, once their weights have been fixed at the end of training / fine-tuning. This is so, 
even though their model fitting may include stochastic components, and re-training a model 
on the same data may result in different parameters.

In contrast, methods for unsupervised learning like cluster analysis, network analysis, 
or data-driven derivation of semantic vector representations of AEs may be stochastic and 
generate different results when executed repeatedly on the same data. The same is true 
for generative LLMs, which will typically produce different outputs for the same prompt, 
without changes to the underlying models. For such AI models, stability of output can be a 
key additional performance metric, reflecting how similar the results of repeated analyses 
are. Sometime, the level of stochasticity can be directly controlled by hyper-parameters. 
There may also be specific measures taken to reduce the variability in output depending 
on the method. While repeatability of results can sometimes be artificially ensured through 
seeding the pseudo random number generator, this may not be possible for proprietary 
models and does not improve the inherent (in)stability of the AI solution, which should be 
evaluated. Whether a non-deterministic AI system is appropriate for a given application will 
depend on its context of use and the possible negative effects of variability in the output, 
according to the principles of a risk-based approach.

5.4.	 Assessing artificial intelligence systems with 
human-in-the-loop

Many AI systems aim for intelligence augmentation, i.e. to support and enhance human 
decision making. In this context, the relevant focus of performance evaluation would be of 
the human-AI team requiring a different nature of testing than described above. To date, there 
is limited experience of such studies in PV applications, but at a minimum, they would need 
to account for the variability in skills and preferences between different human members 
of the team. Defining a relevant test set may also present new challenges: for example, 
for signal detection applications, human domain experts could not be blinded to historical 
safety signals; and it may be difficult to obtain a reference standard if the aim is for the 
human-AI team to exceed the quality of classification by unassisted human domain experts.
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What constitutes acceptable performance may need to account for how the AI system is 
integrated with the PV system and how humans will interact with the system.22 For example, 
performance evaluation for an NLP-based system to identify and extract AEs from source 
documents might in addition to the overall performance evaluation consider whether errors 
can be readily spotted in the results and whether the end-to-end hybrid process performs 
better than a fully manual approach (for an example see Park et al 202323).

5.5.	 Continuous integration and deployment
Deployed models should be monitored in real-world use with a focus on maintained or 
improved performance. In some circumstances, there may be reason to revise and update 
performance criteria in production as the business understanding of the task is refined or 
the conditions for the task itself change due to external factors.

For deployed AI solutions that incorporate ML components, there should be appropriate 
processes and QCs for periodical re-training to manage risks of performance degradation 
or negative impact from dataset drift. In some instances, the retraining may consist of 
incremental fine-tuning within existing model architectures whereas more substantial changes 
to the deployment domain may require changes to the architecture of the AI model. The latter 
could result from a change in scope from medicines to vaccines, revisions of the underlying 
medical terminologies or data structures, updated regulation or conventions and more.

Continual performance evaluation can be relevant regardless of whether an AI system 
incorporates ML components or not. Its frequency should follow the risk-based approach 
and may include data-driven safeguards to identify, for example, substantial data drift or 
performance degradation. Such observations may trigger remedial actions that could 
include additional evaluation, and possible retraining, stopping use of the algorithm and/
or introducing QC measures to maintain confidence in its results. In the case of dynamic 
AI models continually fine-tuned or otherwise updated in (near) real-time after deployment, 
automated detection of model drift may also trigger re-validation activities. Documentation 
of activities and acceptance criteria for re-introducing AI solutions under such circumstances 
may also be required. As an example, they may include known input/output pairs which are 
checked each time an AI system undergoes a change, or mechanisms to guard against 
automation bias.

One of the potential benefits of ML is the ability to improve performance through iterative 
modifications, including by learning from RWD. To support this approach, the US FDA, Health 
Canada, and Medicines and Healthcare products Regulatory Agency (MHRA) described a 
“Predetermined Change Control Plan” for ML-enabled device software functions (ML-DSF). 
Their general principles might conceivably be applied to AI systems in PV. A Predetermined 
Change Control Plan generally includes: 1) a detailed description of the specific, planned 
modifications; 2) the associated methodology to develop, validate, and implement those 
modifications in a manner that ensures the continued acceptable performance of the algorithm; 
and 3) an Impact Assessment of the benefits and risks of the planned modifications and risk 
mitigations. The detailed description of the planned modification should include changes to 
the characteristics and performance of the algorithm resulting from the implementation of the 
modifications. An example of a modification might include retraining a ML model. A protocol 
providing the details of the data and methods used to develop, evaluate, and implement 
such a modification should be created and adhered to. An Impact Assessment of the 

C
H

APTER
 5. Validity & Robustness   

51
ARTIFICIAL INTELLIGENCE IN PHARMACOVIGILANCE



modification should be carried out and risk mitigation measures developed to ensure that 
any identified risks will be controlled. This approach should be further incorporated into the 
quality management system (QMS) governing the PV process being modified.

There should be straightforward means to report issues or anomalies encountered, and these 
should be addressed promptly, and escalated as appropriate. Ideally, the response would include 
acknowledging receipt of feedback, providing updates on investigations, and implementing 
necessary changes to the AI system.
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Chapter 6.  
TRANSPARENCY

Principle

Transparency regarding AI involves disclosing information between organisations or 
individuals. This includes sharing relevant documentation of the AI system lifecycle (i.e. 
design, development, evaluation, deployment, operation, re-training, maintenance and 
decommission) to facilitate traceability and providing stakeholders with enough information 
to have a general understanding of the AI system, its use, risks, limitations, perceived 
benefits, and impact on their rights.

Key messages

	— Declaring when and how AI systems are used for core PV tasks is critical for building 
trust among domain experts, decision makers, regulatory authorities, and the public.

	— The nature of AI solutions deployed for core PV tasks should be sufficiently described, 
including their model architectures, expected inputs and outputs, and the level and 
type of human-computer interaction.

	— To give a clear picture of an AI model’s effectiveness and limitations in a PV application, 
performance evaluation results for the specific task should be presented and describe 
the scope and nature of the test set(s), including definitions of their reference standards 
and sampling strategies.

	— Presented performance metrics should be relevant for the intended deployment 
domain, compared with relevant benchmarks, and complemented by qualitative review 
of representative examples of correct and incorrect output.

	— If possible, a description of the general principles and logic by which an AI model 
functions and arrives at its outcomes / predictions should be shared. A lack of 
explainability should be acknowledged and discussed.

6.1.	 Introduction
Transparency provides stakeholders with relevant information regarding the nature and 
use of an AI system. It reflects what information is shared with key stakeholders by those 
who develop or deploy it. The main purposes of transparency are to build trust, to enable 
individuals and organisations not involved in their development to inspect and scrutinise the 
design and performance of AI systems, and to ensure regulatory compliance.

As further elaborated on in the Chapter on Governance & Accountability, the primary direction 
of transparency and disclosure of information varies during the phases of the AI system 
lifecycle. For example, during the design phase the business owner should be transparent 
toward developers regarding the specification and requirements for an AI system, whereas 
in the pre-deployment phase developers should be transparent toward the business owner 
regarding the nature and performance of an AI system. During routine use, the most important 
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form of transparency may be from the organisation toward end users (and in some cases 
regulatory authorities).

6.2.	 Disclosing use of artificial intelligence
It is essential to disclose why, when and how AI is being used in different PV tasks. This is 
to maintain trust, awareness, and responsibility among stakeholders, including developers, 
PV professionals and decision makers, regulatory authorities, HCPs, and patients. Confidence 
scores and other metrics communicating the AI model’s certainty in a prediction or output 
can be a valuable component of such disclosure. However, the validity and robustness of 
such scores and metrics must also be ensured and their meaning clearly communicated 
to end users.

Regulatory bodies require disclosure of AI use to assure compliance with applicable laws 
and regulations. To this end, software vendors and internal development groups need to be 
transparent toward PV organisations, who in turn need to be transparent toward regulatory 
authorities. At the same time, those individuals who utilise AI solutions to process or analyse 
PV data must be informed about the AI’s role in their workflows to help them integrate AI 
into their processes in an informed manner to support its effective application and ensure 
that they can identify any issues arising from AI use.

PV professionals should also communicate the provenance of data elements and whether AI 
solutions contributed to their capture or development. Human interpretation of PV data may 
depend on how it was ascertained. For example, signal assessors may lend different weight 
to a case narrative that was auto generated from structured elements compared with one 
that documents the patients’ or health professionals’ verbatim description of the AE. There is 
also a risk of a vicious circle where AI generated information is used as part of a reference 
standard in subsequent AI model development, if its provenance is not properly disclosed.

6.3.	 Transparency regarding the artificial 
intelligence model

Ensuring sufficient transparency of the AI models used in PV is critical to fostering trust, 
facilitating informed decision making, and ensuring that these models are applied appropriately. 
Ideally, transparency should be extended to also capture decisions made by PV professionals 
resulting from the AI model. Model transparency is also an ethical imperative, ensuring that 
all parties understand the systems they are working with and can make informed decisions 
based on their outputs. Below are key aspects of an AI model that should be disclosed to 
stakeholders. The rationale behind the design choices should also be explained, to help 
ensure that the model is aligned with its intended use and stakeholder needs.
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Table 3:	 Key aspects of an artificial intelligence model to disclose 
to stakeholders

Source: CIOMS Working Group XIV 

Intended Use The intended use of each AI model should be clearly defined and 
communicated. This includes specifying the PV tasks the model is 
designed to assist with or perform, such as adverse event recognition in 
free text, signal detection, or case triage.

Human-
Computer 
Interaction

The level and type of interaction between humans and the AI models 
should be communicated. This includes specifying whether the AI model 
is executed autonomously, has a human in-the-loop or on-the-loop (and 
what their required competence would be), or aims to provide decision 
support to down-stream human specialists.

Model 
architecture

The type of AI model and its general architecture should be disclosed, 
such as whether it is rule based, uses linear models, or specific types 
of neural networks, or combines different ML models in an ensemble or 
multi-agent system, etc. Additionally, relevant details about the model’s 
structure, such as the type and depth of a neural network architecture, 
should be shared.

Model 
parameters

At a minimum, key predictors or features that drive the decisions of an 
AI model should be disclosed, if they are known. If feasible, the full set 
of model weights and parameters can be shared, to enable external 
replication and external performance evaluation. For AI solutions based 
on GenAI models, predefined prompts should be specified along with any 
pre- or post-processing steps.

Explainability If possible, a description of the general principles and logic by which 
an AI model functions and arrives at its outcomes / predictions should 
be shared, or the lack of explainability should be acknowledged and its 
implications discussed. (See also Section on Explainability).

Training set Details about the training set(s) based on which bespoke ML components 
have been developed should be disclosed. This would include their size, 
scope, annotation guidelines, quality assurance, and creation date, along 
with reflections on how well they align with the intended deployment 
domain and a justification for their use.

Standard AI 
Components

If the AI model incorporates public standard components, such as pre-
trained ML models, libraries, or frameworks, or datasets, this should be 
disclosed, including the specific versions used, date of access, and any 
custom parameter settings.

Acceptable 
Inputs

The types of inputs that the AI model expects should be specified. 
This provides insights regarding the basis for the AI model’s outputs 
and ensures that it is only fed with data it is designed to handle, thereby 
maintaining the accuracy and reliability of its outputs.

Type(s) of 
Output

The types of output generated by the AI model should be described. 
Examples may be risk scores, classifications, alerts, or free text, as well 
as metrics conveying the AI model’s certainty regarding specific outputs.

Known 
Limitations

Any known limitations regarding the nature of the AI model should be 
communicated, including e.g. features or types of interactions, which it is 
unable to account for, or known biases or under-served populations (See 
Chapter on Fairness & Equity).
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To allow other developers and researchers to fully replicate an AI model and possibly even 
modify it for further use, an organisation might choose to publish its full set of parameters 
and weights or even share the source code. This level of openness supports peer review and 
validation by external experts, which can enhance trust in the model’s reliability and foster 
innovation. However, it will not always be feasible due to considerations regarding intellectual 
property, competitive advantage, or the sheer complexity of large models. Moreover, for many 
stakeholders, access to raw code and parameters of a complex AI model may not enhance 
their understanding and will need to be complemented by the other measures for model 
transparency described above. Understanding the rationale, assumptions, and subjective 
decisions made in the implementation can be more important for gaining meaningful insights 
into the model’s function and effectiveness. For full scientific reproducibility, developers 
may also need to share the relevant reference sets, at least those used for performance 
evaluation. However, depending on the use case and stakeholders involved, this may conflict 
with the data privacy principle.

6.4.	 Explainability
A specific form of transparency relates to disclosure of the general principles and logic by 
which an AI solution operates and has arrived at a specific output. This may help nurture 
trust, allow affected individuals to understand and influence outcomes, support down-stream 
human decision making and facilitate human oversight and regulatory compliance. In this 
context, explainability and interpretability are important concepts, which partly overlap.

The set of Guidelines on the testing of AI-based systems in the ISO standard for Software 
testing in Software and systems engineering characterises explainability as a “level of 
understanding how the AI-based system ... came up with a given result” and interpretability 
to a “level of understanding how the underlying (AI) technology works”.1

Similarly, the AI Risk Management Framework of the US National Institutes of Standards and 
Technology includes the following statement: “Explainability refers to a representation of the 
mechanisms underlying AI systems’ operation, whereas interpretability refers to the meaning 
of AI systems’ output in the context of their designed functional purposes”.2

The OECD Transparency and Explainability Principle 1.3 states:3

“Explainability means enabling people affected by the outcome of an AI system to understand 
how it was arrived at. This entails providing easy-to-understand information to people affected 
by an AI system’s outcome that can enable those adversely affected to challenge the outcome, 
notably – to the extent practicable – the factors and logic that led to an outcome.”

For the context of this report, we adopt a similar perspective and use explainability in a 
broader sense to reflect the degree to which humans can understand the factors and logic that 
have led to a specific outcome or that play a role in the general operation of an AI solution.

Concrete examples which illustrate the role of explainability in different PV use cases are 
provided in Appendix 3.
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6.4.1.	 Benefits of explainability
Explainability can be beneficial because it may:

	— Nurture trust in an AI system, by enabling stakeholders to make sense of and 
contextualise an AI solution’s output;

	— Allow individuals affected by an AI system’s output to challenge and influence 
the outcome;

	— Support and speed up human decision-making which builds on or integrates an AI 
system output;4,5

	— Propose scientific hypotheses for consideration by end users - individual or combinations 
of features such as drugs, diseases, and demographics that are included in the 
proposed explanation of the findings may provide signals of adverse drug reactions, 
and adverse drug-disease interactions worthy of evaluation, as well as potential 
biological mechanisms of adverse drug reactions;6

	— Enable more complete documentation, audit, and human oversight of AI systems;

	— Contribute to regulatory compliance especially when it is possible to retain and 
examine the human decision together with the AI output and the explanation upon 
which the decision was based;

	— Facilitate troubleshooting by revealing issues such as possible biases or likely 
spurious correlations;7,8

	— Contribute towards model assessment and selection by uncovering what is causing 
different models trained on the same data to perform differently.

Referring to the definition above, the individuals who could challenge the output of the PV 
AI system and require explainability are more likely to be stakeholders who are directly 
involved in the PV process rather than members of the public.9 They may range from the 
PV and QA staff who are directly interacting with the AI, the developers who are building or 
maintaining an AI system to the regulators who are inspecting it. Examples on how different 
stakeholders in the PV process can benefit from explainability are provided in Appendix 4.

6.4.2.	 Inherent vs post hoc explainability
AI models of limited complexity may be inherently explainable, allowing the basis for their 
output to be deduced from direct inspection of their model architectures and parameters.9 
This is also referred to as ante-hoc explainability. Examples may include lower-dimensional 
decision trees, rule-based classifiers, and regression models.

In contrast, a growing field of research seeks to obtain post-hoc explainability for more 
opaque AI solutions, including deep neural networks with complex architectures and more 
parameters than a human can survey or comprehend. With such approaches, a separate 
layer of methods and techniques are applied on top of the AI solution10 to trace and explain 
the basis for a specific, already generated output. Some post-hoc explainability approaches 
seek to explain the output of complex AI models by estimating relative feature importance 
and others do so by determining the minimal change in one or more features required to 
change a given output. There are also methods that provide post-hoc explainability of a 
specific output by fitting simpler, inherently interpretable models to the local context of a 
specific output. For examples of specific methods in use at the time of writing this report, 
please see Appendix 4.
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When a post-hoc method is used to gain explainability, it must itself comply to the applicable 
regulatory requirements for computerised systems. In other words, the post-hoc explainability 
method should be verified regarding its fitness for purpose and the process integrating such 
methods must be validated. Post-hoc explanations offer an approximate understanding of 
the relationship between the data and the predictions.11 The explanations can be imperfect 
or incomplete and/or provide only a partial explanation.

Generative LLMs can be prompted to produce apparent rationales for their outputs. However, 
such rationales are language artifacts that do not provide direct access to the model’s internal 
computation and may merely be post-hoc rationalisations. For PV use, organisations may 
prefer evidence-anchored justifications (explicit links to input spans or source documents) 
over free-form ‘chain-of-thought,’ and require faithfulness tests before accepting LLM-produced 
rationales as part of the audit trail.

6.4.3.	 Challenges related to explainability
Stakeholders are advised to critically consider what type of explainability is required for the 
intended use case, for whom, and for what purpose, and whether the AI system they are 
considering can provide it, bearing in mind that explainability may not be an appropriate 
goal for all AI solutions.12

The level of explainability of an AI solution’s output should not be the sole determining factor 
for model selection. For example, applications like machine translation depend on the higher 
capabilities and improved performance offered by deep neural networks and typically do not 
require inherent explainability. A negative impact of limited explainability may be mitigated by 
ensuring high transparency regarding other aspects of the AI system and its performance, 
coupled with extra care to achieve validity and robustness and human oversight.13 At the same 
time, it should not be assumed that explainability necessarily leads to lower performance 
and that a trade-off between the two needs to be made.14

Similarly, while explainability of an AI model’s output can sometimes help identify issues with 
validity and robustness or fairness and equity, explainability alone does not prove that the 
system is fit for purpose, nor does it vouch for the trustworthiness of the system.15 It attempts 
to clarify what factors led to a specific output but is not indicative of an AI model’s general 
performance or of its fairness and equity. For example, even if an inherently explainable AI 
model does not include age as one of its explicit features, it could bias against an age group, 
if this bias is mediated by other features. In fact, explanations may make stakeholders more 
susceptible to overreliance on model outputs, so called automation bias.15 Also, explainability 
is no guarantee of transparency – an organisation may, for example, choose not to disclose 
the key features and inner logic of an inherently explainable model such as a decision tree.

Explainability is not the same for all stakeholders. What is understood by model developers 
could be incomprehensible for other stakeholders9 and explanations must be accessible 
to people with a wide range of literacy and educational attainment.10 Since humans will 
need to process and contextualise any explanations provided, they should also be informed 
about and aware of their own possible biases and blind spots which may influence their 
ability to leverage the explanations. Related to this, it should be noted that, in the worst 
case, a plausible explanation for an incorrect AI output may increase the likelihood that it is 
accepted without the appropriate critical review by some end users.
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6.5.	 Transparency regarding performance
Transparency regarding an AI model’s assessed performance of a specific PV task 
communicates how well an AI model operates in practice and complements the insights 
into the design, implementation, and decision-making processes provided through model 
transparency. It provides a bridge between theoretical capability and practical utility. Without 
a clear view of how an AI model behaves under realistic conditions, stakeholders cannot 
fully assess its suitability for use or be confident in its robustness and validity. Performance 
transparency ensures that all stakeholders, from end-users to regulatory authorities, have a 
clear understanding of an AI model’s strengths, limitations, and expected behaviour in the 
contexts where it will be deployed. This is particularly important in PV, where AI systems 
support information processing and decision making, with the aim of safeguarding patient 
safety and public health.

By recording and being able to share detailed performance evaluations with relevant 
stakeholders, organisations offer clarity on the strengths and limitations of the AI system, 
including quantitative metrics, qualitative examples, and comparisons to benchmarks. Thereby 
organisations provide the necessary context to build trust and appropriate reliance on AI 
systems. This transparency allows for informed decision making by PV professionals and 
decision-makers, ensures that AI systems are used within their intended scope, and helps 
identify areas where adaptations or special measures may be required. Additionally, it supports 
continuous improvement by highlighting areas where the model may need further refinement 
or retraining.

In support of this, there should exist clear documentation of the data used for performance 
evaluation, including the rationale for its selection, how it was acquired, cleaned and 
transformed, and any processes for managing missing or erroneous data.

Table 4 outlines relevant aspects to disclose to ensure transparency regarding the estimated 
performance of an AI model. For further elaboration, see the Chapter on Validity & Robustness.

Table 4:	 Relevant aspects to disclose to ensure transparency regarding the 
estimated performance of an artificial intelligence model

Source: CIOMS Working Group XIV

Scope of 
evaluation

Describe the nature of the reference sets used for performance 
evaluation, acknowledging any known deviations from the intended 
deployment domain (e.g. over- or under-representation of certain drugs, 
adverse events, patient populations). Relevant information would include 
the types of data and from where they have been derived.

Sampling Describe the prevalence of positive and negative controls in the reference 
set and how this relates to the intended use. If they are different, 
describe how performance evaluation was adjusted to account for this. 
Describe any use of data augmentation for performance evaluation.

Reference 
standard

Disclose the definitions of different categories of classification used in 
performance evaluation (for example, positive and negative controls in 
a binary classification task). Share any annotation guidelines used to 
improve quality and consistency of human annotations in developing the 
reference standard.
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Human input Describe the qualifications of human assessors contributing to test set 
development and any use of parallel annotations and evaluations of 
concordance during this phase. If the AI solution includes a human-in-the-
loop during operation, then state the qualifications of those individuals 
who participated during performance evaluation.

Summary 
metrics

Present standard performance evaluation metrics when suitable 
or motivate the use of customised metrics. Place emphasis in this 
presentation on levels of the decision threshold relevant to the intended 
use and deployment domain (e.g. with a realistic balance between false 
positives and false negatives). Complement composite performance 
metrics with their components (e.g. precision and recall for an F-score).

Benchmarks Present comparisons against relevant benchmark methods (including 
human-level performance) and/or standard benchmark reference sets, 
when available.

Subsets & 
sensitivity 
analyses

Present the results of any subset or sensitivity analyses during 
performance evaluation or acknowledge the lack thereof.

Qualitative 
review

Provide representative examples of correct classifications and 
representative examples of incorrect classifications (false positives and 
false negatives).
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Chapter 7.  
DATA PRIVACY

Principle

Data privacy refers to the fundamental right of an individual to control how their personal 
information is collected, stored, shared, and used. It is an aspect of the principle of “respect 
for persons” that is foundational to the conduct of biomedical research. Legislation, regulations 
and guidance documents provide certain measures intended to preserve the confidentiality, 
anonymity, autonomy and control of sensitive and potentially personally identifiable health 
data in the setting of PV.

Key messages

	— Application of AI in PV that may involve protected data should consider the standard 
principles for research activities involving human subjects.

	— The use of AI applications in PV requires additional attention to ensure that appropriate 
safeguards are in place to address data privacy requirements.

	— The applications of ethical principles most relevant for the use of AI in routine PV are 
data privacy, fairness, and equity.

	— PV professionals should recognise that existing procedures used to assure regulatory 
compliance may need to be re-evaluated due to the heightened risks of GenAI to 
compromise data privacy and for ML to amplify biases.

7.1.	 Introduction
Although data privacy has been recognised as an implicit legal right for well over a century,1 
it was not until the 1970’s that this topic began to receive formal international attention. 
Advances in computer technology began to facilitate the large-scale collection, organisation, 
and evaluation of amounts of data that had previously relied upon paperwork. In the absence 
of any laws regulating how public bodies could collect, store, or share personal data, the first 
data privacy law was passed in 1970.2 In the US, public concerns about the potential 
misuse of collected data led to the US Privacy Act (1974),3 which established a code of fair 
information practices that governs the collection, maintenance, use, and dissemination of 
information about individuals that is maintained in systems of records by federal agencies. 
These same issues raised concerns about transfer of large amounts of personal data across 
borders, which led to the first international guidelines to protect data privacy in the context 
of international trade.4 Similar to this CIOMS Working Group report, the OECD guidelines 
laid out a set of core principles; however, its intent was to assist governments, business 
and consumer representatives with the objective of supporting data transfer to facilitate 
commerce while protecting personal data privacy. Over the following decades, the guidelines 
have influenced many subsequent data protection regulations/laws, such as the Health 
Insurance Portability and Accountability Act of 1996 (HIPAA), Pub. L. 104-191, 110 Stat. 
1936 and General Data Protection Regulation (GDPR) 2016, both of which are discussed 
later in this chapter. As noted in Appendix 2, considerations to protect data privacy are 
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specifically identified in a survey of recent major national and international reports on the 
use of AI, generally and in pharmaceutical development.

7.2.	 Ethical considerations
While data privacy concerns are widely recognised in the use of AI, at the time of publication, 
there has been limited attention paid to specific ethical considerations applied to the use of AI 
in PV.5 Many publications that refer to ethics and AI, such as the WHO Guidance, Ethics and 
Governance of Artificial Intelligence for Health,6 emphasise several basic principles that were 
first elaborated in the Belmont Report (1979).7 The Report was designed to provide an ethical 
framework for clinical and behavioural research; however, it has subsequently been applied 
to certain PV activities (acknowledging that most PV is not typically considered research).

The Belmont Report identified three basic principles that are foundational to interventional 
and behavioural research involving human participants: respect for persons; beneficence; 
and justice.

Respect for persons refers to the obligation that individuals are free to decide whether 
to participate in research. In clinical research, informed consent is recognised as one 
application of this principle. In the setting of PV, the principle may be applied to data privacy 
and the right to control one’s personal information (acknowledging that for the purpose 
of PV, statutes may infringe). Beneficence emphasises that research should be designed 
and conducted to maximise benefits and minimise harm to participants. As applied to PV, 
this principle is captured in ongoing benefit-risk assessment. Justice focuses upon fairness 
and non-discrimination. In PV, justice can be applied as fairness and equity, i.e. that the 
benefits of PV knowledge be distributed equitably across populations.

The Report’s original intent was to establish universal principles applicable to clinical and 
behavioural research, not to address public health activities. In the succeeding decades, 
as certain areas in public health have expanded (e.g. through access to data and associated 
research methods that were unavailable in the 1970’s), its principles have been applied to 
areas such as disease surveillance and PV. As an example, post-authorisation safety studies 
are often required as a condition of product licensure and may use RWD sources to generate 
real-world evidence (RWE). The report of the CIOMS Working Group XIII is on Real-World Data 
and Real-World Evidence in Regulatory Decision Making.8

As applied to AI applications in PV (e.g. training and validity testing, and generalisability), 
data privacy (drawn from Respect for Persons6) and fairness and equity (drawn from Justice6) 
are particularly relevant for ethical considerations. Fairness in PV requires non-discriminatory 
practices, ensuring that findings are representative of the population exposed to a product, 
and equity is essential to ensure that PV benefits are shared broadly, a topic explored further 
in the following chapter.

Many countries have established laws to protect the data privacy rights of the individual. 
These laws share the common principle that personal data requires protection, and that 
this should be accomplished through mechanisms that mitigate risk to the individual while 
requiring accountability of the entity using the data. Two of the most frequently cited are the 
1996 HIPAA Pub. L. 104-191, 110 Stat. 1936, used in the United States, and the GDPR, 
2016, which is employed in the European Union (EU). These examples will be used to illustrate 
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commonalities and differences between data privacy regulations, and their implications for 
the application of AI to PV.

Example: Health Insurance Portability and Accountability Act

As the name suggests, HIPAA (1996) originally focused on health insurance data9 and was 
developed to ensure data privacy during the transition of medical information from analogy 
to digital. HIPAA also introduced administrative standards for health care data to improve 
efficiency in the health care industry. In short order, the rapid adoption of digital technologies 
in health care (e.g. EHRs) and the interest in using electronic data for research and other 
purposes led to additional regulations to support the use of EHRs according to standards 
that would ensure administrative efficiency while protecting patient privacy and security 
(HIPAA Privacy Rule, 2000; Security Rule, 2003; Health Technology for Economic and Clinical 
Health [HiTech] Act Breach Notification Rule, 2009). The HIPAA Privacy rule addresses the 
use and disclosure of individuals’ health information, called protected health information (PHI), 
by organisations subject to the Privacy Rule, called “covered entities”, as well as standards 
for individuals’ privacy rights to understand and control how their health information is used. 
A major goal of the Privacy Rule is to assure that individuals’ health information is properly 
protected while allowing the flow of health information needed to provide and promote high 
quality health care and to protect the public’s health and wellbeing.

HIPAA emphasises the confidentiality, integrity and availability of health data, and requires regulated 
entities to make reasonable efforts to limit the use, disclosure of, and requests for PHI to the 
minimum necessary amount to accomplish a particular purpose. It specifies patients’ rights to 
access and amend PHI. To protect patient confidentiality, HIPAA recognises types of data that 
could be used to identify individuals and specifies 18 unique PHI identifiers. The list underscores 
the range of common data types that are largely unrelated to health care and which contain 
identifiable information that could compromise patient identity: name(s), geographic subdivisions 
smaller than a state, dates (except year, e.g. date of birth), telephone numbers, fax numbers, email 
addresses, social security numbers, medical record numbers, health plan beneficiary number, 
account numbers, certificate/license numbers, vehicle identifiers, device identifiers, web URLs, 
internet protocol (IP) addresses, biometric identifiers (e.g. fingerprints); full face photographs, 
as well as any other unique identifier that could be used to trace the identify of an individual. 
Once these identifiers are stripped from a source record, the record can be used or disclosed 
without restrictions imposed by HIPAA as the record no longer contains PHI.

Public health often balances societal interest with personal rights. Based on overriding 
societal needs for the safety, effectiveness, and quality of medicinal products approved for 
use in the US, routine PV activities conducted by application holders are typically exempt 
from certain HIPAA requirements for patient authorisation to disclose and use PHI. Medicinal 
products are governed in the US FDA regulations that require, among other things, monitoring 
the quality and safety of US FDA-regulated products, which is conducted in part through 
AE reporting, product tracking, recalls, and post-marketing surveillance. While certain PV 
activities are exempt from certain HIPAA requirements, data privacy protections remain, 
including: use of the minimum necessary data standard (collecting only data essential to 
fulfil the PV responsibility), de-identification and/or anonymisation of data (employed where 
possible); use of technical, administrative, and physical safeguards to prevent unauthorised 
access, use, and disclosure of PHI; and requirements for Business Associate Agreements 
(where vendors or partners are engaged by a covered entity). Within the US, the US FDA and 
Centers for Disease Control and Prevention (CDC, Atlanta) are responsible for public health 
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matters as part of their official mandate. Among its responsibilities, the US FDA is responsible 
for “protecting the public health by assuring the safety, efficacy, and security of human and 
veterinary drugs, biological products, medical devices ...”. The CDC responsibilities include 
protecting “America from health, safety and security threats, both foreign and in the U.S.”, 
including whether diseases are chronic or acute, curable or preventable. This is accomplished 
in part by conducting “critical science and providing health information that protects (the 
US) against expensive and dangerous health threats”. The Privacy Rule permits covered 
entities to disclose PHI, without authorisation, to public health authorities that are legally 
authorised to receive such reports for the purpose of preventing or controlling disease, 
injury, or disability. Covered entities are generally required to reasonably limit disclosures of 
PHI made without individual authorisation for public health activities to the minimum amount 
necessary to accomplish the public health purpose.10

In contrast to public health authorities and the private sector, academic involvement in PV 
is generally conducted as a research activity, e.g. Post-Approval Safety Studies (PASS), 
and are subject to different oversight, including the use of institutional review boards (IRBs, 
aka ethical review boards) to assure that studies meet appropriate ethical standards, and are 
to mitigate data privacy concerns, including data use agreements, where applicable when 
collaborating with other organisations. This includes the use of de-identified and limited data 
sets, and compliance with both HIPAA and the Common Rule (45 CFR 46, Subpart A – HHS 
Policy for Protection of Human Subjects, which governs the ethical conduct of research 
involving human subjects), along with other applicable requirements.

Example: General Data Protection Regulation

The GDPR (Regulation [EU] 2016/679) is a comprehensive regulation overseeing personal 
data protection in the EU and succeeds the earlier Data Protection Directive (Directive 
95/46/EC), which was issued contemporaneously with HIPAA, at the dawn of the internet 
age. The scope of the GDPR is much broader than HIPAA as it pertains to the use of personal 
data affecting all manner of human interaction, including processing by automated means 
as well, and stems from the 1950 European Convention on Human Rights: “Everyone has 
the right to respect for his private and family life, his home and his correspondence”.11

The GDPR incorporates principles such as lawfulness, fairness, transparency, accuracy 
and integrity, purpose limitation, data minimisation, confidentiality, and storage limitation. 
Compliance is a major feature of the GDPR with organisations such as pharmaceutical 
companies required to have a Data Protection Officer responsible for overseeing compliance. 
Penalties for non-compliance may be significantly greater than those under HIPAA, with fines 
up to 4% of global turnover.

Several safeguard measures may be used to help ensure data privacy, such as data 
encryption (preventing access without a decryption key), anonymisation (where possible) 
or pseudonymisation (replacing identifiable information with pseudonyms to mask identity), 
and use of Data Protection Impact Assessments to identify and mitigate risks in data 
processing to protect the individual. In contrast to HIPAA, GDPR incorporates a “right to be 
forgotten”, permitting individuals to request deletion of their personal data. In the case of 
special categories of personal data, such as health data, explicit consent may be required 
for data processing under GDPR and, where collected, such consent may be revocable.

Similar to HIPAA, the rules of the GDPR allow for pharmaceutical companies to meet their 
legal obligations to conduct PV activities, monitor and report AEs without consent in order to 
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ensure oversight of the safety and effectiveness of medicinal products – provided that certain 
safeguards are in place (and subject to the individual laws of the respective member states). 
These responsibilities may limit data protection rights normally in place under the GDPR, 
e.g. the “right to be forgotten”. Other safeguards include requirements for data minimisation 
as well as administrative, technical and organisational measures to protect personal data.

In fulfilling its responsibilities to assure the safety, effectiveness, and quality of medicinal 
products authorised for use in the EU, the EMA is empowered to assure PV oversight in 
a manner that acknowledges that certain data protection rights, such as the right to be 
forgotten, may be limited for specific PV activities. The EMA emphasises the principles 
of data minimisation, purpose limitation, lawfulness, fairness and transparency in its data 
use. The GDPR has special provisions for international data transfers, imposing restrictions 
in exporting data collected for EU citizens (regardless of domicile) outside the European 
Economic Area (EEA) and applies safeguards to provide an appropriate level of data protection.

Data privacy expectations for PV research conducted by academia in the EU are analogous to 
those for the US, with IRB or Independent Ethics Committee (IEC) oversight and an emphasis 
upon adherence to principles of data minimisation and purpose limitation. Additionally, 
international collaborations that involve data transfers outside of the EEA require safeguards 
that typically include contractual language to assure compliance with GDPR rules.

7.2.1.	 Other data privacy laws regulations
Although the US FDA and EMA data privacy regulations are currently the most widely followed, 
it should be noted that there is an increasing number of country-specific differences, which 
pose particular challenges for the use of multinational AI model development involving 
the secondary use of data. Comparison of regulations in place in Brazil, China, Germany, 
and Japan illustrates this point.

Table 5:	 Data privacy regulations for secondary use of data in Brazil
Source: CIOMS Working Group XIV

Aspect Brazil

Governing Law General Data Protection Law (Lei Geral de Proteção de Dados, 
LGPD), Law No. 13.709/2018

Health Data 
Classification

Sensitive personal data includes health data; additional safeguards 
for children and adolescents

Consent Requirements 
(Research & PV)

Consent required in principle; exceptions allowed (e.g. legal/
regulatory obligations, implementation of public policies, 
protection of health, and research by authorised institutions)

Secondary Use of 
Data (e.g. RWE)

Permitted when justified by legal bases (e.g. regulatory 
obligations, public policies, health protection, or research); 
ANVISA’s regulatory activities exempt from consent

De-identification 
Standards

Anonymisation and pseudonymisation encouraged to reduce 
reliance on consent; focus on transparency, purpose limitation, 
and data minimisation

Cross-border Data 
Transfer

Applies to processing of personal data of individuals in Brazil 
regardless of processor location; international transfers permitted 
if LGPD requirements and safeguards are met
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Aspect Brazil

Pharmacovigilance 
Exemptions

Adverse event reports and technical complaints handled by 
ANVISA without consent under regulatory/legal obligations and 
health protection grounds

Regulator Guidance on 
Biomedical Use

LGPD implemented nationally; ANVISA Ordinance No. 1,184/2023 
establishes Personal Data Protection Policy (including inventories, 
security measures, impact reports, contracts compliance, 
and data protection culture)

Oversight Body National Data Protection Authority (ANPD); implementation in 
health sector by ANVISA

Key References LGPD, Law N°13.709 (2018);12 ANPD regulations;13 ANVISA 
Ordinance No. 1,184/202314

Table 6:	 Data privacy regulations for using secondary data in China
Source: CIOMS Working Group XIV

Aspect China

Governing Law Personal Information Protection Law of the People’s Republic of 
China (PIPL); Data Security Law of the People’s Republic of China, 
Cyber Security Law of the People’s Republic of China.

Health Data 
Classification

“Sensitive personal information”

Consent Requirements 
(Research & PV)

Explicit consent generally required; strict interpretation

Secondary Use of 
Data (e.g. RWE)

Permitted with new consent or proper anonymisation

Cross-border Data 
Transfer

Strict rules: security assessments, contracts, individual consent; 
limited adequacy

Pharmacovigilance 
Exemptions

AE reporting permitted but must minimise identifiable data

Regulator Guidance on 
Biomedical Use

PIPL + draft health data governance rules; evolving

Oversight Body Cyberspace Administration of China (CAC) (oversees cybersecurity 
and data protection) and National Health Commission (regulatory 
authority establishes and implements standards for medical and 
health data)
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Aspect China

Key References  PIPL (2021);15 CAC draft regulations on health data;16 State 
Council health data measures (2022)17; Data Security Law of 
the People’s Republic of China;18 Cyber Security Law of the 
People’s Republic of China;19 Regulation on Network Data 
Security Management;20 Measures for the Security Assessment 
of Outbound Data Transfer;23 Provisions on Promoting and 
Regulating Cross-border Data Flows;21 Law of the People’s 
Republic of China on Basic Medical and Health Care and the 
Promotion of Health;22 Regulation of the People’s Republic of 
China on the Administration of Human Genetic Resources:23 
Measures for the Standard Contract for the Outbound Transfer of 
Personal Information.24

Table 7:	 Data privacy regulations for secondary use of data in Germany
Source: CIOMS Working Group XIV

Aspect Germany

Governing Law General Data Protection Regulation (GDPR) (EU-wide), Federal Data 
Protection Act (BDSG) (Germany)

Health Data 
Classification

“Special category data” (Art. 9 GDPR)

Consent Requirements 
(Research & PV)

Usually required; exceptions for public interest (e.g. PV, RWE)

Secondary Use of 
Data (e.g. RWE)

Allowed if legal basis exists (public health, scientific research, 
etc.) with safeguards

De-identification 
Standards

Pseudonymisation encouraged; full anonymisation for broader 
reuse

Cross-border Data 
Transfer

Allowed to countries with adequacy or with SCCs/ Binding 
Corporate Rules (BCRs)

Pharmacovigilance 
Exemptions

Explicitly exempt from consent under public health/legal obligation

Regulator Guidance on 
Biomedical Use

Extensive EMA and national ethics bodies guidance

Oversight Body German DPAs and European Data Protection Board (EDPB)

Key References GDPR (Regulation EU 2016/679); EDPB Guidelines 03/2020; 
EMA Module VI (GVP); BDSG (Germany)
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Table 8:	 Data privacy regulations for secondary use of data in Japan
Source: CIOMS Working Group XIV

Aspect Japan

Governing Law Act on the Protection of Personal Information (APPI)

Health Data 
Classification

“Special care-required personal information”

Consent Requirements 
(Research & PV)

Consent generally required, but pseudonymised data may be used 
for public interest or research

Secondary Use of 
Data (e.g. RWE)

Allowed with pseudonymisation/anonymisation and research 
purpose declaration

De-identification 
Standards

Recognises both anonymised and pseudonymised data; latter still 
regulated

Cross-border Data 
Transfer

Permitted to “adequate” countries (EU, UK); otherwise, consent or 
contracts needed

Pharmacovigilance 
Exemptions

AE reporting allowed without consent under regulatory mandate

Regulator Guidance on 
Biomedical Use

MHLW guidance on clinical research and PV under APPI

Oversight Body Personal Information Protection Commission (PPC)

Key References APPI (2020 amendment);25 Act on Anonymized Medical Data That 
Are Meant to Contribute to Research and Development in the 
Medical Field;26 PPC Guidelines;27 MHLW guidance on GPSP and 
human research ethics28

7.3.	 Practical considerations to support data 
privacy

As these examples indicate, there are regulations that support appropriate data privacy within 
the framework required to conduct routine PV activities. The list of 18 unique identifiers 
enumerated by HIPAA highlights the breadth of the types of data that can be used to identify 
individuals. In the years following the introduction of HIPAA and the GDPR, there has been 
recognition that additional measures may be required to anonymise data.

As a regulated industry, pharmaceutical companies must comply with the data privacy 
and reporting requirements of all countries in which their products are approved. As an 
example, the EMA requires adherence to GVP and to data protection principles from the 
GDPR. Ensuring compliance requires attention to evolving country-specific regulations, 
the oversight of vendors that support companies (in some cases conducting certain PV 
activities for individual companies) as well as business partnerships, e.g. where a combination 
therapy is co-developed by more than one company. Regulatory authorities may have 
different requirements for reporting patient information, necessitating some customisation 
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and additional oversight to assure adherence to local requirements. For example, Australia 
requires reporting of ethnicity (to support fairness/equity), while it is prohibited in France 
out of concerns of discrimination.

To support compliance with global data privacy requirements, contractual arrangements with 
third parties (e.g. vendors, partners) include privacy-specific provisions and language. In the 
US, contractual arrangements with vendors/partners by a covered entity require Business 
Associate Agreements. Under GDPR, BCRs may be implemented to enable multinational 
companies to move personal data within their companies across borders; BCRs are legally 
binding and require approval from EU authorities. In the EU, an additional layer of oversight 
is imposed through the required use of in-house data privacy officers for certain businesses 
such as pharmaceutical companies. Globally, there is a range of potential consequences for 
data breaches, from requirements for notification to data protection authorities up to and 
including significant fines and penalties.

7.3.1.	 Risks to maintaining data privacy as artificial intelligence 
is employed in pharmacovigilance

One of the promises of AI is that it will permit more efficient processing of large amounts 
of routine PV data, e.g. ICSRs. Additionally, LLMs, whether open or closed, permit nearly 
instantaneous planned (or unplanned) linking of data sources that would otherwise not have 
occurred, or would have been difficult to accomplish. As discussed below, these risks are 
substantively greater for open vs closed LLMs. GenAI models are also useful for extrapolation 
– finding patterns that might otherwise not have been recognised. These attributes raise 
the question of whether current data privacy tools are sufficient to prevent re-identification 
of de-identified data.

Adequacy of de-identification measures

In 1990 (six years prior to HIPAA), a US researcher used census data to identify 87% of the 
US population based on three readily available data elements: five-digit mailing (zip) code, sex, 
and date of birth, illustrating that few data points were needed to uniquely identify individuals.29 
Though mailing codes were subsequently classified as PHI under HIPAA, the point remains 
that just a few generally accessible data points may be needed to compromise data privacy.

A study using data from a children’s hospital in Ontario, Canada, demonstrated that the risk 
of re-identification of individuals based upon de-identified pharmacy data could be minimised, 
or even eliminated, by reducing the precision of values in selected data elements, such as 
replacing the admission and discharge dates with the quarter and year of admission. 
However, the maximum amount of acceptable generalisation in the data element values 
must be determined by formally examining not only the risk of re-identification and breach 
of patient privacy but also the intended analysis, which may not be conducted without the 
appropriate level of precision.30

The EMA and Health Canada now require public sharing of clinical trial reports as part of 
the drug approval process. Standards for data anonymisation have been issued. Applying 
these standards, researchers evaluated the risk of re-identification associated with a clinical 
study report for a nonsteroidal anti-inflammatory drug, grading suspected cases based on 
the likelihood of accurate matching.31 The authors found six suspected matches out of 500 
reviewed cases and observed that identifying the matches was time-consuming (24.2 hours 
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per case). Re-identification was best informed by social media and death records, although 
it was uncertain if the re-identification had been successful. Based on the ≤0.09 probability 
risk threshold of re-identification established by EMA32 and accepted by Health Canada, 
the authors concluded that existing anonymisation guidance was sufficient to provide an 
adequate level of data protection (defined as non-zero, but a small number of low confidence 
re-identifications); however, they also observed that the findings may not apply to studies 
of rare diseases, nor to studies that employ qualitative rather than quantitative methods for 
anonymisation. With rapid advances in AI, the time required to replicate the re-identification 
exercise reported in that study (published in 2020) will likely have decreased by the date of 
this report and will continue to do so.

Risks of data breaches

The potential consequences of re-identification of de-identified data are amplified by 
numerous examples of data breaches that have occurred throughout the world. Today’s AI 
is advancing rapidly and risks for re-identification will only increase as AI methods become 
more sophisticated. A few examples illustrate the breadth of some recent data breaches 
(when AI was not as advanced as currently), along with their potential consequences.

	— A purposeful attack on a US financial firm leading to access of more than 100 million 
customer accounts and credit card applications.33

	—  An apparently politically motivated international attack by a foreign government on 
a credit reporting agency in the US resulting in the release of names, birth dates, 
and social security numbers of nearly half of the US population, purportedly with the 
intent of using AI to compromise US government officials.34

	— A purposeful domestic data breach intended to embarrass a political opponent, 
involving a cyber-attack on an Asian health care plan that resulted in 1.5 million 
patient records.35

	— An unintentional release of Indian government biometric, and other personal data, in a 
database containing records of 1.2 billion individuals.36 In this instance, a criminal 
group exploited the data breach and offered individual patient records for sale. 
Approximately 100,000 persons are known to have had their data accessed.

Each example occurred before the widespread use of GenAI, a technology that has been 
advancing rapidly, and which has the potential to efficiently link publicly available data 
sources with those obtained maliciously, leading to enhanced risk for re-identification and 
compromising data privacy.

Individual responsibility to protect personal data

In addition to processes to ensure data privacy to conform to data privacy regulations, 
individuals play a role in protecting their own data. This responsibility grows in importance 
with the ever-increasing number of digital tools (e.g. Smartphones, wearables), apps, 
and software (e.g. AI-assisted translation tools, GenAI) that provide opportunities for individuals 
to disclose personal data that may not be sufficiently protected. In many instances, there are 
legal requirements to support an individual’s data privacy (e.g. through the GDPR); however, 
there remain opportunities for lapses in data privacy, and these are particularly worrisome in 
the use of GenAI. Common mechanisms to advise persons of data use policies may include 
terms of use (e.g. End User Licensing Agreements – aka EULA), data privacy notices, and, 
in some instances, the requirement of explicit consent for use of personal data. Individuals 
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may share personal data (e.g. names, phone numbers), when submitting queries without 
understanding the consequences of disclosing such information. In many instances, notably 
those using open GenAI tools, these data may no longer be private. Individuals may share 
context-specific information, such as a recent illness (or as in a noted example, a motor 
vehicle accident) that might be used to identify them.37 Users may also unintentionally 
provide personal identifying information by sharing (e.g. in social media) context-specific 
data outputted by GenAI. These data may subsequently be leveraged to identify the individual 
even if personal data was not directly entered depending upon the data privacy policies of 
the respective platform. As GenAI is rapidly evolving, regulations to safeguard data privacy 
in GenAI will need to evolve as well.

Potential risks to data privacy using Large Language Models in pharmacovigilance, 
and approaches for mitigation

In principle, existing data privacy regulations, (or legislation, such as the GDPR), should 
provide the basis for protection of data used in AI applications to PV. Model development 
may require the use of PV data (such as ICSRs) to data scientists and ML engineers for 
training as well as execution. All involved parties, which may include both pharmaceutical 
companies and vendors, may have access to data that is protected, creating the risk for 
exposure to larger groups. All parties should be aware of data privacy requirements. The risk 
is potentially greater with LLMs, as the underlying mechanism of these models provides the 
potential for some re-identification that would otherwise be unlikely. Those organisations that 
maintain closed LLMs may exercise control of prompts as well as the data contained in the 
models. Open LLM models lack this safeguard thereby increasing the risk for re-identification, 
as these models have access to diverse sources of data that are not necessarily within 
the purview of data privacy regulations (for example, containing the sort of data described 
above under Individual responsibility to protect personal data). Leaks may occur through 
prompts that bypass data privacy considerations or through models that are trained on 
personal data. Additionally, as noted above, re-identification can occur even with data that 
have been presumed de-identified (e.g. where postal code, birth date, gender, ethnicity have 
been retained). PV requires review of potentially identifiable and sensitive information that 
includes basic demographics (including birth date) associated with sensitive data elements 
including medical or health information (including medicine and vaccine exposure), ethnicity, 
race, sexual orientation, genetic information, biometric data, physical characteristics, lifestyle 
information, etc., requiring heightened safeguarding measures.

Among the types of challenges posed by GenAI (as well as in some cases ML) for PV are 
the following.

	— Algorithms may be developed within open LLMs, without attentiveness to applicable 
data privacy requirements, thereby posing a potential privacy risk. If these LLMs are 
then adopted for use within closed LLMs, there is the potential risk for disclosure of 
protected information.

	— Within a closed LLM, attention should be paid to different sources that may be added 
to the LLM for unrelated purposes. If genetic data has been collected (with participant 
consent) for a study and is added to a LLM for a specific analysis, measures would 
need to be taken to ensure that it is not used for a different purpose outside of the 
original consent. The accepted practice is to seek consent for additional uses of 
those data (as the data would now be part of the LLM) or ensuring suitable controls 
(e.g. access controls, monitoring of inputs and outputs to mitigate data leaks).38,39
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	— GenAI programs can integrate otherwise discrete data sources such as census and 
vital statistics and public health data, which may be linked to a de-identified health 
record data set (e.g. in the setting of an active PV activity e.g. a post-authorisation 
safety study) leading to the possibility of re-identification.

	— Other privacy risks may include: (i) data persistence (i.e. data being retained within 
the AI system and never deleted once retention time has lapsed); (ii) complexity of 
upholding data subject rights, such as access right if an AI system was trained on a 
dataset that the system no longer holds as such; and (iii) transparency: when a model 
is trained through data scraping (e.g. on the web) without a data subjects’ knowledge.

Individual use cases of GenAI/AI must comply with local and relevant globally applicable 
legislation. Risks are amplified in settings where data privacy regulations are lax or poorly 
enforced. LLMs that are smaller and introduced earlier have tended to have more scrutiny 
for data privacy than larger and more recent LLMs (see Figure 5). Reasons may include: 1) 
lack of public availability of newer, larger LLMs; and 2) privacy technologies have struggled 
to keep up with these newer, larger LLMs.

Figure 5:	 State of research on privacy protection for Large Language 
Models (as of June 2025)

Source: Modified from Yan B et al 202540

The timeline axis represents the release time of LLMs, while the vertical axis indicates the size of parameters. 
Blue data points represent LLMs that have received limited attention in the literature on privacy protection, while 
black data points signify models that have been studied alongside privacy concerns. The green background draws 
attention to the central cluster of LLMs that could help boost privacy protection. At the time of publication of the 
article, recently introduced larger LLMs had not been as fully evaluated in the scientific literature with respect to 
data privacy as earlier, smaller models.265

7.4.	 Conclusions
The right to data privacy resides within the well-established framework of basic ethical principles 
for human research protection articulated in the Belmont Report. National regulatory authorities 
have provided requirements intended to protect data privacy, indicating the types of data that 
can be made available, along with safeguards (such as data minimisation, anonymisation, 
de-identification and data encryption) along with potential penalties for non-compliance.
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Despite data privacy laws and the increasing sophistication of technical measures employed 
by companies entrusted with personal information, attempted and successful data breaches 
have been occurring with increasing frequency and often at enormous scale (affecting in 
some cases >100 million individuals), suggesting both failures in oversight along with 
technical advances to outwit cybersecurity measures and break into secure data sources.

Ever-increasing computational power, larger linked databases, and the introduction of 
GenAI, are occurring in parallel with an increasingly globalised PV landscape involving more 
numerous and complex interdependencies (e.g. business partnerships, international vendors 
conducting PV activities). The ongoing challenge for PV professionals, regulatory agencies, 
industry, as well as PV organisations and academia will be to assure that within this rapidly 
evolving data science landscape, data privacy measures are monitored and regularly updated 
to properly protect personal data.

A potential risk in applying GenAI for PV is patient re-identification, suggesting a need to 
reconsider the specificity of de-identified data, along with risks associated with open LLMs 
in which some data sources may be outside the control of the user.

In addition to having existing data privacy policies in place and adhering to data privacy 
regulations, efforts to mitigate risks to data privacy when applying AI to PV may include 
the below.

	— Recognition that the technology is advancing rapidly, requiring ongoing monitoring, 
e.g. to assure that data de-identification measures are adequate.

	— Attentiveness to policies that may be introduced by GenAI firms to mitigate the risk 
of re‑identification.41

	— Legislation may also impose criteria for GenAI models intended to mitigate 
systemic risks.42,43

	— On-premise or private cloud deployment, advanced anonymisation techniques, 
federated learning architectures, differential privacy methods, and comprehensive 
contractual safeguards governing data handling, retention, and cross-border transfer 
with AI service providers.

	— Understanding that open and closed LLMs pose somewhat different challenges to 
data privacy. Operating closed LLMs in safeguarded environments within institutional 
firewalls and carefully examining the risks of sharing these models with third parties 
should be helpful in risk mitigation.

	— Audits to evaluate whether only the minimum required personal information is included 
in reports, that any re-use of data for secondary purposes is consistent with the 
purposes for which that data was collected and that adequate measures are in 
place to support compliance with data protection requirements by all entities (e.g. 
vendors) contributing to PV. Insofar as PV activities may be conducted by a network 
of collaborating organisations, the organisation with the weakest oversight of data 
privacy may present a risk.

	— Oversight regarding access to LLMs for PV practices to assure that use by trained 
PV professionals is fit for purpose.
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Chapter 8.  
FAIRNESS & EQUITY

Principle

Fairness and equity require awareness of and adherence to impartiality, equality, non-
discrimination, diversity, justice, and lawfulness. The benefits of AI in PV should be equitable 
across all relevant populations and groups. Throughout the AI lifecycle, it is important to 
avoid and mitigate unfair bias, any discriminatory practices and unjust social wellbeing and 
environmental impacts.

Key Messages

	— Consider the development and application of AI impacting fairness and equity, whose 
lack or imbalance may result in discriminatory harm to subpopulations underserved 
by an AI solution, explicit biases resulting in negative impact, or impact performance 
by providing inaccurate results.

	— Plan and implement mitigation strategies when possible for areas where bias may 
be introduced reducing potential underperformance; avoid discriminatory harm to 
underserved populations.

	— Equity may be advanced by taking measures (e.g. assess for representative data sets) 
to assure that AI applications to PV result in outputs (e.g. assessments, aggregated 
data outputs used for product safety assessments) that are relevant to populations 
anticipated to have exposure to the specific medicinal product being evaluated.

	— Screening and identifying explicit or potential bias using appropriate statistical 
methodologies when possible is key to implementing mitigation measures to reduce 
risk, determining AI applicability and limitations, and establishing expected performance 
acceptance criteria.

	— Scrutinise training and performance evaluation reference data sets for adequate 
representation and evaluate performance in relevant subgroups when possible. 
Inadequate reference data is often the cause of inadequate fairness and equity.

	— Fairness and equity in ICSRs remain limited due to the known limitations of spontaneous 
reporting systems, with some countries reporting significantly more than others 
and providing more contextual data for analysis, such as RWD. Consequently, 
our understanding of routine usage is often limited among underserved populations.

8.1.	 Introduction
In the context of PV, adherence to established laws and regulations such as privacy laws 
and PV regulations must remain intact with the introduction of AI. What has changed is the 
increasing awareness of the need for consideration, governance, and mitigation of potential 
factors that may influence or impact fairness and equity to various degrees depending on 
the type of technology, data source and application of AI.
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Not all fairness and equity concepts, considerations or negative consequences associated 
with the use of AI will be uniquely specific to PV. Fairness and equity considerations are 
challenging and can be influenced by cultural differences, historical inequalities, perceptions, 
socio-economic differences etc., and may appear subjective. That does not negate the need 
to address these considerations. To limit bias, intentional actions are required throughout 
the AI lifecycle, from concept and design through implementation, and while in production, 
to reduce discriminatory risk.1

Biases within AI solutions is a general problem which may impact performance, and not all 
forms of statistical bias will result in a negative impact on fairness and equity. Within PV, 
the focus will be regarding unfair bias introduced through data collection, selection, model 
development and human involvement in the design, development and use of AI that could 
potentially result in unfairness, discrimination, or inequality.

This chapter will not address the impact of development and use of AI on justice and 
lawfulness, on individuals’ access to essential services, lack of public resources for 
financing and implementing AI systems and the required ecosystem, and impact on social 
well-being, because while these are important issues, they are not unique to PV. While not 
unique to PV, access to AI and the required ecosystem can be a significant barrier for 
low- and middle-income countries that can result in inequality and underserved populations. 
Potential workforce implications with introduction of AI in PV will not be addressed here as 
it is discussed in the Chapter on Human Oversight under the Section on Transformation 
of traditional roles. In addition, the rapid acceleration in the use of AI, including GenAI is 
associated with significantly increased energy demand and environmental consequences, 
both of which are acknowledged as having a broad societal impact, but which are beyond 
the scope of this report.2

8.2.	 Fairness and equity considerations and 
pharmacovigilance

Fairness and equity principles are fundamental in identifying and addressing discriminatory 
biases arising from the use of AI systems. In PV, proactive measures are essential to detect, 
assess, understand and prevent adverse effects to ensure safe and effective use of medicines.3 
When utilising AI solutions in PV, it is essential to implement proactive strategies to mitigate 
potential harm caused by AI systems that are being developed for high-risk PV activities.

Thorough evaluation and ongoing monitoring are required throughout the AI system lifecycle 
to identify and quantify potential areas of risk and mechanisms through which bias may be 
introduced as a means to define strategies to mitigate discrimination biases arising from the 
use of AI systems in PV. Monitoring for biases is required from conception, development, 
testing, and following solution deployment. The frequency of monitoring for bias and 
appropriate modification needs to be defined based on risk assessment, solution results, 
and potential external factors that may impact model bias and performance.

It is crucial to acknowledge the possibility of bias that may lead to unfair practices or 
unequal treatment of patients when using AI in activities related to detecting, collecting, 
assessing, monitoring, understanding, and preventing adverse effects or any issues related 
to medicinal products.
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The PV organisation applying AI to PV activities is responsible for ensuring that the solution 
meets the defined business requirements, supports patient safety activities, and does not 
introduce bias that may inadvertently place patients at risk, in a disadvantaged position or 
at potential for discrimination, e.g. denied the potential benefits of a medicinal product, 
through exclusion based on race, gender, age, or socio-economic factors.

8.3.	 Sources of potential threat to fairness and 
equity

Inherently, humans are biased and can introduce that bias throughout the AI system lifecycle 
(e.g. requirements gathering, model training, monitoring may not detect poor performance, 
incorrect results, or missed scenarios). AI experts and developers can have unconscious 
bias, and potentially if not identified and addressed, the output can have limitations, 
be discriminatory and may not be recognised as biased. Conversely, the output could be 
accurate, fair, and equitable; however, results may be rejected by the human with a bias 
towards the AI system as being of poor performance.

8.3.1.	 Inadequate training and/or testing data set(s)
Bias is primarily introduced in the data used to develop and test AI solutions, which can 
perpetuate bias and discrimination resulting in harm. Incorrect conclusions can occur when 
there are data limitations such as when it is not a complete dataset or does not represent 
the population where the AI is being applied. The inappropriate or unintended application 
of AI to populations not represented can occur if data limitations are not transparent or 
recognised. The lack of robustness and availability of data, e.g. health records not digitally 
available globally, can lead to underserved populations or underperforming models. When data 
representation is inadequate, the available data does not correspond to the population and 
consideration is required to remediate under-represented groups or lack of available organised 
data, e.g. regions with less systemic PV reporting systems. Otherwise, scenarios may be 
biased towards groups represented by the training data, and since the training data does 
not represent all groups, e.g. all ethnicities, AI systems with inadequate training data could 
result in poor system performance and discrimination against the under-represented groups.

Inadequate data - whether as a result of data not being available or not organised in a usable 
format or structure, lack of data robustness, or inadequate representation of all variables - 
may result in an under-performing model, or worse, incorrect conclusions as a result of model 
limitations not being recognised, and this may negatively impact patients’ health outcomes. 
For example, an algorithm developed to detect Acute Kidney Injury (AKI) using clinical data 
predominately representing older non-black men may not be reliable when used to detect 
AKI in younger female patients and in ethnicities not represented in the data.4 Imbalance of 
data representation can potentially skew data, amplify imbalances, and it may be difficult to 
identify and assess bias when reviewing an AI solution’s output.

It is acknowledged that it may not always be possible to find datasets for development 
and testing that are fully representative of the intended population. In some cases, the gap 
between apparently similar datasets may be too wide to bridge. In others, appropriate care 
can be taken to re-purpose a dataset. For this, the developer should provide appropriate 
documentation and demonstrate the appropriateness of models trained on imperfect data.
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Historically, there have been examples of bias influencing PV activities because of data 
limitations such as known under-reporting or stimulated reporting of AEs, with inadequate 
data or imbalance of data that could result in misleading or inaccurate results. Rofecoxib 
(Vioxx), a Cox-2 inhibitor prescribed for osteoarthritis pain, provides an important example 
of stimulated reporting where a significant number of AE reports were received once 
withdrawn.5,6,7 Impact of safety alerts on measures of disproportionality in spontaneous 
reporting databases exemplifies the notoriety bias. Drug safety. Litigation, such as class 
action lawsuits that are pursuing product liability claims, can result in stimulating high volume 
of reported AEs during the process of legal firms identifying potential plaintiffs.10 Solicited 
reports could overshadow unsolicited reports and the imbalance of data could be a threat 
to fairness and equity considerations if the data imbalance results in incorrect conclusions 
with groups that are under-represented as a result of skewed data.8 Reporting practices, 
data availability, and variability should be considered to understand limitations and limit 
potential bias. These data biases, if introduced into an AI solution, will potentially magnify 
the negative impact and remain undetected with difficult identification of underlying bias.

8.3.2.	 Underserved groups
Under-representation can directly result in underserved population segment(s) and potentially 
not recognise nuances of subpopulations. Population-specific segmentation can be done 
by demographics, disease processes, genetic variability, health practices variability, 
and cultural differences for medical regimens and patient expectations. Such differences 
can introduce bias, resulting in a negative impact or outcome. This can occur if data are 
exclusive to a specific group, if data are exclusionary, or if nuances of a subgroup are not 
understood. For example, a case prioritisation algorithm may underperform in reports from 
certain countries in Asia if reports from Asia were under-represented in a training data set 
and differed in important ways from other countries represented. Inclusion of appropriate 
subject matter experts (SMEs), who can support identification and assessment of limitations 
of representation to ensure that these groups can be accounted for when developing and 
applying AI solutions, is fundamentally important.

During clinical trials, such potential harm may be missed by the Investigator if subgroups are 
under-represented in the study population or receive a lesser level of care, e.g. have limited 
access to medical professionals or facilities. There may be more focus on preventing false 
negatives to not miss significant information, e.g. the failure of the PV process to detect 
potential harm restricted to or over-represented in certain subgroups. In the post-marketing 
period, deployment of an AI solution working less well in certain patient subpopulations could 
lead to an inability to detect AEs from these populations. Conversely, false positives may be 
of greater concern in duplicate detection where a higher rate of reports falsely flagged as 
suspected duplicates in a specific country could lead to missed or delayed safety signals there.

Special populations frequently not represented, such as age-related (paediatric, geriatric), 
pregnant women, and infrequent or under-reported events such as rare diseases, and events 
with social stigmas need to be considered when assessing bias. In the example of an AI 
solution implemented to support signal detection activities, with limited data from special 
populations (e.g. pregnancy), the negative impact would be magnified with misinterpreted 
or missed signals.

Reliance of decision making on data not representative of respective populations (e.g. post-
approval risk minimisation activities based on data with limited representation of served 
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population) could result in minimisation measures not properly addressing safety of patients 
in the population. If unable to mitigate insufficient data in AI solutions, it may require non-AI 
PV safety measures (e.g. robust monitoring measures for special populations).

The detailed identification of groups that could be disfavoured, identification of low-volume 
events that are disproportionate to the data set, along with deploying comprehensive strategies 
to address insufficient data, when possible, can reduce potential bias and discrimination 
against underserved populations.

8.3.3.	 Artificial intelligence solution design
Algorithms should not perpetuate existing bias or discrimination, and the algorithmic design 
can lead to unintended consequences. When AI was used to develop a model to predict 
which patients would benefit from proactive intervention in the care of their chronic illness, 
its results directed more resources to white patients than black patients, because the data 
set used for training was based on utilisation, not need.9 Given a healthcare system and a 
universe of healthcare data that is likely to carry country-specific biases, any naïve use of 
AI will reproduce these biases in its predictions. The likelihood of adverse consequences 
is more likely because of the apparent opacity of AI, hype about its capabilities, limited 
understanding of how it works, and unclear pathways to question its conclusions.

Human-defined parameters and how a model processes data could introduce bias or produce 
inaccurate results. If individuals select or design features for an AI solution based on their 
own conscious or unconscious bias, the resulting output could be suboptimal or even 
incorrect. In the case of GenAI prompt engineering development, the potential to introduce 
bias based on the prompt design, lack of specificity, context, or omission of a required 
prompt could result in an output with a negative bias. Individual preferences influence 
decisions and subsequently influence data selection and model development. This could 
occur due to the model developer having an affinity to subgroups like their own profile (e.g. 
developer is a younger adult and may select data that does not account for paediatric or 
geriatric populations).

The development strategy should have a conscious systematic approach to limit bias and 
achieve complete and accurate data representation accounting for representative groups. 
Strategies could include review and adjustments of AI solutions as necessary, including the 
avoidance of historical biases. Documenting how distinct groups are represented in the 
training and test data may provide insight to limitations, bias, and potentially impact supporting 
implementing mitigation measures. When considering the population of respective groups, 
confirmation that the data are representative of the global population is needed to ensure 
balance, demographic parity, and appropriate distribution and allocation.

AI is increasingly employed in the field of medicine to identify patterns and anomalies, 
such as consistencies, inconsistencies, and outliers in the identification of safety issues and 
communications. For example, examining sentiment consistency can help flag and mitigate 
human-induced discrepancies. This proactive approach reduces the risk of unfairness and 
bias, enhancing the reliability and objectivity.10
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8.4.	 Risk, impact, and mitigation measures
The consequences of AI on fairness and equity are dependent upon the application of AI 
within PV, the usability, performance, and the risk of where the AI is being used within the 
process. When there are discrimination and bias embedded in the AI model through data 
limitations and/or algorithm development, the negative impact of the resulting biased 
model is magnified in its application. The model may amplify or skew outcomes resulting in 
incorrect conclusions, incorrect introduction of an advantage or disadvantage, inequalities, 
or discrimination of groups or populations.

To assess the impact of potential bias, methods of analysing the fairness can be utilised. 
Current techniques for assessing fairness in AI systems are focused on normative (value-based), 
procedural (process focused) and algorithmic (technical) approaches, as described by Li & 
Chignell.11 Normative approaches focus on societal norms, shared values and principles to 
achieve an ideal standard for development of AI systems. Procedural approaches allow for 
self-assessment using a defined framework such as checklists or decision trees. Algorithmic/
statistical approaches rely on a technical solution to support fair algorithmic decision 
making. Formal impact assessments of AI systems should include screening for potential 
bias that could negatively impact fairness and equity. This screening allows for identification 
of potential risk areas and responsive mitigation measures to minimise negative outcomes. 
When possible, applying appropriate statistical methods to test for bias as part of a detailed 
assessment supports development of mitigation strategies related to AI. An example of 
applying statistical tests of fairness is the use of t-tests assessing bias against minority/
majority, single case bias, and unsuccessful favouritism toward minority/majority.11

Evaluating an AI solution pre- and post-deployment for explicit or potential bias allows for 
mitigation measures to reduce risk. AI solution explainability may highlight explicit bias and 
understanding the profile of training data provides a degree of insight into potential areas 
where bias may be introduced into the solution, determining appropriate use, solution 
limitations, degree of human oversight required, and expected performance. When evaluating 
for bias, consideration should be given to post deployment data annotation processes for 
future retraining activities and mitigation strategies when possible.

Within PV signalling activities, omitted results could cause misrepresentation of a product 
benefit/risk profile and have a detrimental impact, leading to incorrect human conclusions 
or decisions impacting patient safety.

Sensitivity analysis of performance across different subgroups can be important to highlight 
groups or populations underserved by an AI solution. A risk-based approach when selecting 
subgroups to evaluate performance may be necessary when an exhaustive sensitivity analysis 
is not feasible and may be dependent upon data limitations for training and test data for 
subgroups or populations.
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8.5.	 Key mitigation strategies
	— Evaluate each AI solution for fairness and equity, outlining the assessment method, 
results, and any measures taken to mitigate.

	— Consider common biases across each phase of AI model development and key 
mitigation strategies to address biases at the different phases of the AI model 
lifecycle.4 Ensure that training and test data sets are complete and representative 
of all relevant groups.

	— Perform sensitivity analysis when possible, evaluating AI model results for equity by 
changing subgroups/populations to confirm expected results and highlight underserved 
populations. This is especially important when an AI solution has a lower level of 
explainability. Examples:

•	 Modify sex and gender input and evaluate impact to the output;

•	 Refer to an example noted in the Section Underserved groups regarding a case 
prioritisation algorithm underperforming in certain countries such as Asia.

	— Review AI solution design, parameters, and feature selection for bias when an AI 
solution is explainable and the results are not as expected.

	— Ensure training data description is transparent, highlighting explicit bias, and allow 
clarity on model limitations to reduce inappropriate application or incorrect conclusions.

	— Determine level of human involvement required in development and monitoring 
activities, providing required input to ensure accurate performance and fair results.

Identification of potential risk areas is challenging but key to preventing bias, discrimination, 
and suboptimal model performance. Avoidance of data limitations is not always possible 
and providing visibility of data characteristics allows appropriate application and opportunity 
to mitigate risk. It is important to understand the model limitations and communicate to 
the user community and group monitoring AI performance of limitations and potential bias.
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Chapter 9.  
GOVERNANCE & ACCOUNTABILITY

Governance - Principle

Governance refers to the human management system used to control and direct the use of AI 
in the PV system. An AI governance framework requires implementation of risk management 
practices and policies to ensure adherence to the AI guiding principles.

Accountability - Principle

Accountability applies to clearly defined roles, responsibilities and liability for organisations 
and/or individuals deploying, operating and managing AI systems to fulfil PV obligations. 
It requires the adoption of appropriate governance measures by relevant stakeholders, including 
but not limited to regulators, vendors, users, developers, data providers or pharmaceutical 
companies involved in setting policy, developing, deploying, maintaining and managing AI 
systems. This ensures operations remain within expected parameters throughout the AI 
lifecycle while addressing any unforeseen consequences.

Key messages

	— Governance requires the established PV QMS system to include a comprehensive 
approach across all lifecycle stages of an AI system as well as the processes it 
impacts and should therefore be established as early as possible.

	— Accountability rests with the organisation that owns and operates the AI solution for 
PV and requires clearly defined roles and responsibilities for stakeholders involved 
in it; AI systems themselves cannot be held accountable.

	— Systems and processes, along with service providers and software vendors, need to 
be qualified.

	— Regular reviews of AI systems and how they adhere to the AI principles are necessary 
to ensure ongoing regulatory compliance and performance.

	— A governance framework grid for an AI solution in PV can serve as a structured guide to 
help relevant parties to document key elements throughout the lifecycle of the AI system.

	— Governance and accountability should be independent of the business’ utilisation and 
value proposition of the AI system to facilitate unbiased decision making.

9.1.	 Introduction
Previous chapters have discussed in detail the importance of taking a risk-based approach, 
providing adequate human oversight, demonstrating validity and robustness, and addressing 
transparency, data privacy, fairness and equity when integrating and implementing AI systems 
into the overall PV system. This chapter outlines the guiding principles of governance and 
accountability in AI-enhanced PV. We will discuss the importance of these two principles, 
the stages of the AI lifecycle that require specific governance actions, the roles and 
responsibilities of various stakeholders, regulatory oversight, and the need for ongoing 
training in the rapidly evolving field of AI technology.
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Robust governance and clear accountability are crucial for the success of AI initiatives. These 
principles help ensure that AI systems are used responsibly and ethically, are compliant with 
regulations, while fostering trust and transparency among stakeholders. Clearly defined roles 
and responsibilities enable all stakeholders to understand their obligations and effectively 
oversee AI solutions.

As AI technology evolves, governance and accountability frameworks will need to be adapted. 
New risks and challenges will emerge, requiring updated principles and practices. Continuous 
review and adaptation are essential for staying ahead of these changes. These include the 
refinement of the proposed governance framework grid for practical use.

9.2.	 Governance framework
A governance framework grid (referred to as grid) for AI solutions in PV (see Table 9) is a 
structured guide designed to identify key considerations to address each of the principles 
throughout the lifecycle of the AI system, including concept, development, deployment, 
and monitoring phases of the AI system developed for PV use.

In addition to serving as a structured guide for planning and overseeing AI systems, the grid 
can also aid in self-assessment. By detailing where each action or process is recommended, 
the grid helps ensure that the principles such as transparency, accountability, and a 
risk-based approach are consistently adhered to, facilitating the integration of AI into PV 
systems. Regular reviews of KPIs by a governance body, aimed at ensuring adherence to 
the AI guiding principles, can facilitate identification of gaps and drive improvements in the 
AI solution. While a governance body with expertise and focus on AI’s use in PV is needed 
in early phases, integration of the governance process into the overall PV system oversight 
mechanisms should be considered when the AI systems enter routine use phase. If a risk 
emerges that warrants significant modification to the AI system, the AI focused governance 
body may need to be re-engaged.

Consultation with the grid can occur in multiple ways. A unit within a PV organisation may 
have an idea for AI-based automation and specify governance requirements upfront when 
commissioning a vendor or internal development team. Alternatively, a vendor might present 
a ready-made AI system to a PV organisation, which then can be evaluated against the AI 
guiding principles, for example, by applying this grid. Early consideration of governance 
principles is crucial for the successful implementation of an AI solution. These principles 
should guide the development or selection of a vendor system, deployment, ongoing 
management, and decommission. Early planning should be focused on identifying potential 
risks and determining mitigation strategies. Furthermore, it can stimulate focus on alignment 
with ethical and regulatory standards of the AI system from the outset, setting the foundation 
for a robust and compliant AI system.

The grid is composed of five lifecycle phases of the AI solution: an initial requirement 
specification phase where business units typically provide input, followed by development, 
pre-deployment, post-deployment, and routine use. These phases are valid for both initial 
qualification and iterative changes of the AI system. It should also be noted that during the 
lifecycle of an AI solution, it may be necessary to go back to a previous phase to address 
certain needs and discoveries. In each phase, the AI guiding principles should be considered, 
and in the grid, each principle constitutes a cell for relevant documentation hereof. When the 
grid is used for a specific AI solution, each cell is intended to provide information about 
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actions, considerations, or references to where these actions are documented, such as SOPs, 
working instructions, or repositories containing log files, reviewed performance metrics, 
or names of accountable persons/review bodies. Illustrations of how each guiding principle 
is applied throughout the lifecycle phases can be found below, and examples of how to put 
this grid into practice can be found in Appendix 3: Use cases.

The below lifecycle phase descriptions accompany Table 9 on the Governance framework 
grid on pages 92 and 93.

Collection of specifications, requirements: This is the initial phase where the stakeholders 
are identified and engaged, and the project’s objectives, value proposition, scope and features 
are defined. The multidisciplinary team of PV professionals, data scientists, AI/ML engineers, 
software engineers, IT specialists, and other domain experts (refer to the chapter on Human 
oversight) is typically managed by system developers, software vendors, or an internal IT 
development team. This phase provides a roadmap for developers and end-users, and lays 
the foundation for the entire development process. Like traditional software, as an AI system 
evolves, the requirement specifications may also require iterations, and consequently, the grid 
may need to be reconsidered accordingly.

Development & change management: In this phase, the multidisciplinary team focuses 
on acquiring, creating or modifying AI systems, ensuring they are built with the necessary 
functionality and adherence to governance principles. Whether developing an AI system or 
selecting a vendor system, these principles will apply throughout.

Pre-deployment & post change “sign-off”: At this phase, the AI system transitions 
from the development stage to deployment into the PV process. Before implementation, 
a thorough validation including extensive AI specific tailored review of outputs and approval 
process is required to ensure the AI system, or any changes hereof, is ready for deployment. 
Typically, a PV expert becomes accountable for the results produced by the AI system 
and for adapting the processes in which the system will be used. Documentation of this 
phase may include risk assessments, review of sufficient adherence to principles, sign-off 
forms, validation reports, and many references to SOPs detailing the sign-off procedure, 
PV processes impacted by deployment, etc.

Post-deployment & post change “hyper-care”: Following deployment, this phase is critical 
for the immediate monitoring of the AI system’s performance or the latest changes’ impact. 
It is a period of intensive observation to promptly identify and resolve any unanticipated 
issues, as real-life application of the AI system in the PV process might surface issues due 
to various reasons such as incorrect assumptions, design flaws, unintended bias, in earlier 
stages. This phase differs from traditional software hypercare; for AI systems, immediate fixes 
may not be feasible and other measures such as human intervention or increase in human 
oversight might be needed. Documentation is expected and may include incident logs and 
performance analysis reports specific to the most recent change while under observation.

Routine: This phase signifies the full integration of the AI systems into the PV process. 
It involves ongoing monitoring, maintenance, and documentation to ensure full oversight and 
allows for the identification of trends through the monitoring of pre-defined KPIs. This phase 
may reference routine reports, logs of ongoing actions, and which SOP or working instruction 
manages this review process, reflecting the model’s full operational status.

Of note, discoveries during post-deployment or routine use phases may necessitate the AI 
system being suspended and sent back to pre-deployment for enhancements.
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The following, non-exhaustive examples illustrate aspects to consider for each guiding 
principle in relation to the lifecycle phases in the grid.

Transparency: In the Development phase, there is a focus on creating comprehensive 
documentation of the development activities including reason for changes and data used in 
model training. Efforts should be made to ensure AI system and training data description is 
transparent, and limitations are highlighted to reduce inappropriate application or incorrect 
conclusions. In pre-deployment, transparency is further enhanced by adding model performance 
evaluation, and empirical evidence for fairness and equity. Also, the documentation created 
should ensure consistent understanding of the intended use among different stakeholders. 
In routine use, the most important transparency is toward the end-users and those responsible 
for the continual performance evaluation and monitoring.

Accountability: Throughout all phases, there is a consistent need to assign and document 
responsibility, whether it is to IT, vendors, or to PV experts. This ensures clarity about 
who is accountable for the AI system’s development, change management, deployment, 
and performance at any time.

Risk-based approach and human oversight: This begins with identifying the level of risks 
associated with development of the AI system. When relevant, it may involve the development 
of clear annotation guidelines for human domain experts to ensure solid method development 
and performance evaluation. When evaluating AI system performance, special considerations 
should be given for low-prevalence settings (see also the discussion of performance evaluation 
in the Chapter on Validity & Robustness). The next step is to propose appropriate mitigation 
strategies such as defining “human-in-the-loop” within an AI system and other oversight measures 
up to eventually creating risk mitigation requirements in the user interface. It continues with 
redefining human oversight in Pre-deployment, and further refining these concepts at regular 
intervals in the Routine phase based on real-life observations. This sequential approach 
highlights the need for evolving risk management as the AI system advances through its 
lifecycle. A risk-based approach in general is recommended for all measures taken to adhere 
to AI guiding principles.

Any changes to the AI system must undergo the same rigorous governance considerations 
as the initial deployment. This ensures that modifications do not compromise the system’s 
integrity or performance. Documentation and validation are essential to maintain transparency 
and accountability. Change management processes should be in place to handle updates 
and modifications effectively and account for a post-deployment phase, that based on hyper-
care, will confirm performance and quality beyond routine monitoring. As computer system 
validation requirements need to be met at the same time, it is advisable to de-couple AI 
system version control from the rest of the software versioning.

9.2.1.	 Governance body and accountability assignments
To effectively manage the review and agree on actions and risk assessments towards 
the different principles, it is advisable to nominate a governance body. This group ideally 
should be a diverse, cross-functional team that has sufficient awareness of the end-to-end 
process and the extent of automation within it. It should include representatives from all 
relevant stakeholders and representation from the software vendor may also be considered. 
This diversity and segregation of duties ensure a broad and balanced review of the AI system. 
The governance body oversees the development, deployment, performance, and ongoing 

  
C

H
AP

TE
R

 9
. G

ov
er

na
nc

e 
& 

Ac
co

un
ta

bi
lit

y   

94
ARTIFICIAL INTELLIGENCE IN PHARMACOVIGILANCE



management of the AI system to ensure that all actions align with guiding principles and 
regulatory standards. The governance body also determines accountable persons for the 
respective lifecycle phases, which includes sign-off of the documentation prior to deployment 
of the AI system into the PV process. Because business cases are often drivers of AI initiatives, 
the governance body should also include the respective project managers or sponsors to 
ensure adequate resourcing of governance measures during each phase of the lifecycle.

Unlike traditional software, the governance body of an AI system should review the adherence 
to the AI use guiding principles in defined intervals, and ad-hoc if needed, to ensure the 
assessments are still valid. This is due to the rapid evolution of the field and the inherent 
risks of AI systems that changing inputs, rules or other unforeseen issues may disrupt the 
system at varying degrees, some significantly. The appropriate frequency and scope of 
reassessment of a deployed AI system should be assessed. There should be measures ready 
to intervene or even disable the AI system if necessary. Once the governing body defines 
that the AI system has reached the routine use phase, governance can be handed off to 
process owner to be integrated in the overall PV system monitoring process. Nevertheless, 
if a risk emerges that warrants significant modification or suspension to the AI system, the AI 
focused governance body may need to be re-engaged. The introduction of version control 
for the governance framework grid should also be considered.

9.3.	 Traceability and version control
Traceability and version control are crucial aspects of managing AI systems, particularly in 
a regulated field like PV where errors could impact patient safety or public health. They can 
enable evaluation and reproducibility of earlier versions of an AI system and are often required 
for audit purposes (see also the discussion of AI systems with stochastic components in 
the Chapter on Validity & Robustness). General best practices from existing version control 
frameworks can offer orientation for the version control of AI systems, which should be 
documented alongside other relevant systems involved in the end-to-end process. They should 
include clear change control processes within both a user acceptance testing environment 
and the production environment.

Documentation of an AI system should comprise its entire lifecycle, and may cover the 
justification, initial scoping and conception, development, deployment, validation, post-
deployment, and decommissioning. It should allow for the retrieval and reproducibility of 
essential steps and decisions, including justifications and reasoning for deviating from pre-
specified plans. As in traditional computer system validation, experiments conducted in, 
or before, the development environment are not required to be documented step by step. 
However, when the outcome of such an experiment or analysis impacts how an AI system 
is evaluated or deployed, the justification for such decisions should be documented. If a 
decision is based on certain results or insights from the development stage, this should 
be documented.

During the development phase, AI systems undergo continual experimentation and iterative 
improvement. Transparency between the development team and the PV organisation is crucial 
to ensure efficiency and that the system is fit-for-purpose. Developers may create multiple 
versions of a model, test various features, and experiment with different training sets. In this 
context, focus should be on maintaining clear records of significant milestones – such as 
major changes in model architecture, the introduction of new datasets, or significant shifts 
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in performance metrics. This allows developers to track the evolution of the model and 
understand the implications of key changes without being overwhelmed by the sheer volume 
of minor tweaks and experiments.

Once an AI system moves from development to routine use in a production environment, 
the need for rigorous traceability and version control increases substantially. Deployed 
versions of the model should be documented in detail. In addition to the source code for 
each version, its underlying model architecture, training and test sets, and performance 
evaluation results should also be documented. From a regulatory perspective, the appropriate 
place to declare AI components would be in a document such as the PV System Master File 
(PSMF), in the EU.

The continual improvement and adaptation of AI systems post-deployment should also be 
documented. It may be triggered by human domain experts or built into the deployment 
of the AI system itself including pre-specified monitoring of deterioration of performance 
or model drift. Some challenges related to this for Software as Medical Device have been 
described by FDA.1

When integrating external AI components (such as pre-trained models or libraries), it is important 
to document the versions of these components, particularly if they play a critical role in the 
model’s performance. However, it may be sufficient to document these components at the 
time of significant milestones rather than during every iteration. As an example, for AI-based 
static systems, previous work proposes a specific documentation approach with proposed 
considerations for documentation within the different stages of the AI system lifecycle.

9.3.1.	 Roles and responsibilities in artificial intelligence-
enhanced pharmacovigilance systems

Organisations are accountable for the quality processes associated with their PV system, including 
the oversight of the AI components by the system owner. Oversight activities may be executed by 
a third party under appropriate supervision. Regulations, e.g. EU AI Act, may require organisations 
to establish specific roles, such as those to promote AI literacy, and facilitate fairness and equity. 
AI systems themselves cannot be held accountable. Human oversight is essential for ensuring 
the safe and responsible use of AI. Clear roles and responsibilities must be defined for all 
stakeholders involved in AI initiatives.

The roles of PV experts are evolving with the introduction of AI. Already, AI introduces new 
tasks, such as overseeing AI systems and interpreting their outputs. PV experts must adapt 
to these changes and develop new skills and competencies (see chapter on Human oversight) 
to fulfil their obligations. This is especially relevant for members of the governance body 
and persons nominated as accountable for a lifecycle phase. The governance framework 
grid allows stakeholders to assess whether certain new activities will become relevant at 
specific steps, highlighting training needs early.

Just like with traditional software providers, the collaboration between vendors of AI systems 
and PV experts is crucial. This collaboration can help to ensure that AI systems meet PV 
requirements and governance principles. Regular audits and qualification of vendors and AI 
systems, ongoing performance monitoring, business continuity planning are essential for 
maintaining compliance and ensuring development standards. Effective collaboration and 
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audits foster transparency and accountability. This can ensure AI systems that are reliable, 
meet regulatory standards and are inspection ready.

Regulatory authorities also play a role in monitoring AI in PV. They oversee that AI systems 
comply with regulatory standards and governance principles through inspections. Regulatory 
authorities are also developing guidance on the use of AI in the drug lifecycle, including PV (see 
Chapter on Landscape analysis). Integration of AI systems into the PV system must include 
appropriate regulatory documentation (see Chapter on Transparency), such as in the PSMF.

PV inspections are likely to increasingly focus on AI systems, with inspectors reviewing 
AI-related documentation, performance metrics, and governance practices. Inspectors will 
need adequate competencies to evaluate these systems effectively. This includes technical 
knowledge of AI and data science. As a result, continuous development and training are 
needed for inspectors to fulfil their role in new and fast-evolving areas.

Balancing innovation with regulatory compliance and adherence to guiding principles is 
important for the success of AI initiatives. This involves fostering a culture of responsible 
innovation. These goals can be achieved by establishing effective governance processes 
that include regular reviews of AI system KPIs.

Chapter 9 – Reference
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Chapter 10.  
FUTURE CONSIDERATIONS FOR 

DEVELOPMENT AND DEPLOYMENT 
OF ARTIFICIAL INTELLIGENCE IN 

PHARMACOVIGILANCE

10.1.	The evolution and future of artificial 
intelligence in pharmacovigilance

The chapter explores the continuing transformative impact of AI on PV from the current 
application to a vision of how AI might impact PV in the future. The CIOMS Working Group 
XIV’s discussion in the earlier chapters of this report is grounded in common principles. 
Use cases (see Appendix 3) detail various AI systems under evaluation, and at stages of 
deployment, and provide an assessment of their effectiveness within the discipline. To try 
to predict into the future, it is essential to recognise that the trajectory of AI is dynamic and 
highly unpredictable. Indeed, the only truly predictable elements are that AI is expected to be 
ubiquitously deployed in medical sciences with the potential to revolutionise many aspects, 
arguably all, of drug development and medical practice, from bench to bedside – as well 
as PV. For this reason, this chapter is grounded on the further developments of AI in PV 
described in earlier chapters of this report and anticipates how applications based on the 
principles might need to evolve as AI use in PV becomes more prevalent and sophisticated.

The chapter provides considerations for PV stakeholders, including regulators and HCPs 
and other industry stakeholders to ensure AI’s safe and equitable deployment in PV. 
The skillsets needed by PV professionals today will likely differ from those required in the 
future, necessitating involvement in the design, development, deployment, and routine use 
of AI in PV. The examples illustrate the direction and immense potential of AI adoption in 
PV; however, these examples are speculative to a certain extent and are not meant to be 
exhaustive. AI is set not only to potentially revolutionise PV, dissolving traditional boundaries 
of PV, but also expand its footprint far more broadly across medical sciences.

The current decade represents a nascent phase for AI adoption in PV, and it is worthwhile 
acknowledging that the broad field of AI, particularly GenAI, is currently advancing rapidly. 
Further and more extensive deployment of AI may necessitate changes in how we think or 
approach PV strategies in the years ahead, driving the discipline of PV beyond its traditional 
frameworks and transforming it into self-detecting, real-time monitoring of safety data that 
aligns with the evolution of AI-driven medical science; for example, with the ability to rapidly 
analyse and extract vast quantities of safety data for case reporting and signal detection 
purposes. By leveraging this capability of AI, PV will evolve from a reactive focus on reporting 
and assessment to a forward-looking approach centred on proactive prediction and prevention, 
and/or real-/near-real-time learning systems.
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The initial phase of evolution has started to impact PV’s core activities including case 
management and safety surveillance, as it continues to move from reporting and assessment 
towards prevention, enabled by advancements in AI-enhanced healthcare and into radically 
new areas of medicine. These technologies have the potential to reduce manual workload 
and the burden on PV professionals, for example, by accelerating response times for priority 
events, increased capabilities to sift through large and varied sources of safety data including 
literature, automatically creating case reports, and performing signal detection.1,2,3,4,5

10.2.	Transformative role of pharmacovigilance 
long‑term and beyond: from prediction to 
detection and prevention

Advanced AI systems are poised to take PV beyond current boundaries, for example into 
tasks supported by automated or augmented decision making, AI agents and quantum 
computing to improve AI training, modelling and simulation, and optimising personalised 
medicine.6,7,8,9 AI, with capabilities for approximate reasoning, could handle ambiguity and 
partial truth values, for instance, in assessing safety data from social media entries or from 
fragmented safety-relevant data across different systems. Such AI systems may enable PV 
professionals to make nuanced decisions in case classification (e.g. assigning causality) 
or other PV situations requiring medical decision making. This would be particularly useful 
for cases with incomplete or conflicting data, where the gray area requires sophisticated, 
context-aware analysis and/or medical judgment.10,11 While current limitations of AI models 
are acknowledged earlier in this report, a more explicit recognition of the ongoing evolution 
of AI infrastructure is recommended. It is envisioned that evolution of AI systems will improve 
and address some, if not all, of the limitations of the current models.

In the future, an expert AI system, designed specifically for PV, may emulate the judgement and 
decision-making processes of seasoned professionals or organisations with deep expertise 
in the field. These systems may not supplant human experts but augment their capabilities, 
enabling more nuanced and efficient decision making. An expert PV AI system would ideally 
be tailored to incorporate advanced analytical preciseness specific to therapeutic areas 
such as oncology, immunology, vaccines and medical devices as well as very different 
therapeutic options such as digital therapies, ensuring they adapt to the complexities of 
specific therapies, diseases, and patient populations, within those therapeutic areas, while 
performing or supporting PV work. While the development of such systems requires significant 
investment, their potential to drive the next generation of targeted PV solutions positions 
them as a critical innovation in advancing patient safety.

In the future, it is possible that traditional PV will have transitioned from primarily detecting 
and processing adverse effects to a frontline technology-driven discipline that is engineering 
technologies that can detect, evaluate and share the information with “self” (human or organ: 
heart, kidney, liver, lungs etc.).12,13,14,15

This may then allow HCPs and patients to take a more active role in vigilance and prevention 
by taking corrective actions before adverse symptoms arise. As a discipline, PV leveraging 
AI is likely to evolve into a function that develops technologies enabled by AI to perform a 
proactive assessment of anomalies, self-report and self-learn on how to prevent the presence 
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of such anomalies in the future and continue to promote patient wellness and safety. This will 
include true AI-enabled proactive self-regulated vigilance and risk mitigation.

10.3.	Future development and deployment of AI and 
the guiding principles

The CIOMS Working Group XIV members made the careful decision to structure the report 
around common principles for the use of AI in PV, based in part upon the recognition that this 
transformative technology is in a period of exponential growth. A report that was prescriptive 
and overly reliant upon current examples would quickly become outdated, especially if AI 
technologies from other healthcare domains are leveraged. The authors expect that common 
principles for the use of AI in PV will be durable for the foreseeable future. What is less 
certain is how the guiding principles may be applied. Although the principles are robust 
and are expected to endure, it is likely that they will evolve in parallel with the technical AI 
advances and their use in detection, prevention and decision making by the individual human 
or subject going under medical treatment. The potential implications are discussed for each 
of the guiding principles below.

Risk-based approach

Chapter 3 discusses risk-based approaches including risk mitigation, and also considers 
the regulatory framework required.

The proliferation and advancement of AI may lead to continuous self-learning and potentially 
autonomous AI systems, with potentially great advancement in PV and benefit to patients 
and HCPs.

Nevertheless, such systems come with potential concerns and risks. For example, a significant 
concern is the potential for AI to distort our understanding of a medicine’s benefit-risk profile 
in real-world settings. Traditionally, these profiles are evaluated through carefully designed 
frameworks involving spontaneous reporting systems and planned surveillance studies. 
However, AI-driven systems may inadvertently restrict prescribing practices, for instance, 
by limiting access to AI-enhanced PV systems for high-risk patients or preventing off-label use.

Further complicating matters, the adoption and availability of such systems may vary 
across healthcare systems and regions, introducing inconsistencies in data patterns that 
are challenging to interpret. This fragmented landscape can obscure the true influence that 
AI systems exert on prescribing decisions, making it difficult to assess their actual impact 
on patient outcomes. In addition, incorrect interpretation and poor utilisation of AI is likely 
to significantly hamper patient safety. The principles of Human Factors and Ergonomics 
(HFE) can assist in simplifying AI design and consequently optimise human performance 
ensuring better understanding of AI outcome. HFE is a scientific discipline that focuses on 
understanding interactions between humans and other elements of a system to optimise 
human well-being and overall system performance and uses principles, data, and methods 
to design and improve systems, products, and environments.16

The oversight and risk mitigation of such advanced AI systems demands a dynamic risk 
assessment framework; one that integrates near-real-time monitoring and adaptive evaluation 
processes. Ensuring effective communication of these evolving risks to all stakeholders, 
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including patients, will be crucial. As part of risk mitigation, healthcare leaders must embrace 
flexible governance models that account for AI’s evolving nature, ensuring that transparency, 
accountability, and equitable access remain at the forefront.

As covered in Chapter 3 on Risk-based approach, risk mitigation needs to consider identifying 
rare, unexpected anomalies (Black Swan incidents). While current PV systems are well-equipped 
to anticipate, assess, and manage common safety risks, they must also adapt in detecting 
these outlier events, particularly where advanced AI systems are deployed.

Human oversight

Chapter 4 covers human oversight including the changing and transformation of traditional 
roles in PV as AI use becomes increasingly embedded and ubiquitous.

As AI systems become increasingly pervasive and autonomous, the role of human oversight 
will inevitably shift. While maintaining a HITL approach will likely remain essential, this may 
prove insufficient for highly complex or higher-risk applications — including aspects of PV. 
Conversely, in some scenarios, human oversight may substantially change and become less 
relevant, as AI systems surpass human capabilities in reviewing data and regulating their 
own processes.17,18,19

This evolving landscape will require PV professionals to develop new skillsets, AI system 
benchmarking tools and metrics, and undergo specialised training to effectively oversee 
AI-driven systems. This includes, but is not necessarily limited to, AI-aided testing and 
benchmarking, KPIs, workflow improvements, and drift and bias monitoring. The focus must 
extend beyond traditional oversight methods to include competencies in understanding, 
interpreting, and guiding AI behaviours. In addition, there must be implementation of dynamic 
and continuous training of PV professionals and technicians overseeing AI systems in PV to 
ensure appropriate monitoring. However, HITL oversight may be insufficient for certain highly 
complex and/or very high-risk applications. In these instances, new tools may need to be 
developed in conjunction with training to maintain adequate human oversight. By cultivating 
these skills and adjunct oversight tools, PV professionals can ensure that human oversight 
remains meaningful and effective in safeguarding patient safety and public health.

Validity & Robustness

Chapter 5 discusses validity and robustness and considers multidisciplinary collaborations 
required as well as reference standards and performance evaluation that might be needed 
to ensure robust and valid AI systems.

As AI becomes more embedded and sophisticated, the challenge is to develop appropriate 
methods and systems that validate and ensure data integrity in tandem with the developments. 
For example, with the potential for processing vast amounts of data in real time or near real 
time, there is a need for scalable validation methods to avoid the risk of false signals. This may 
require PV individuals to develop new skill sets or even new specific scientific disciplines and 
creation of cross functional and multidisciplined PV teams to meet the demands of validating 
AI-enabled systems. As discussed in Chapter 5, best practices for critical appraisal of AI in 
generative applications are still evolving and will likely become better understood and more 
consistently utilised. AI use with some advanced technologies would need the creation of 
new standards and validation methods and consideration of how it is deployed for optimising 
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the outputs and real-time / near-real-time safety data generated, e.g. neurotechnology such 
as implantable chips, nanotechnology and smart organs.

Transparency

Chapter 6 covers transparency and explainability of AI systems and related challenges.

As AI becomes increasingly pervasive, our ability to track its deployment and understand its 
decision-making processes may diminish, posing significant challenges to explainability and 
transparency. AI systems may mirror complex statistical processes and advance programming 
or AI-coded programs. Consequently, the necessity, and even practicality, of full transparency 
may face new challenges. Expectations of transparency may need to evolve as trust in AI 
systems strengthens and meets predefined confidence thresholds.

Much like AI’s role in data analysis, statistics, and signal detection today, tracing AI’s precise 
influence on downstream decisions may become increasingly difficult. Just as the complexities 
of prior distributions in Empirical Bayes Geometric Mean (EBGM) disproportionality models 
are widely accepted yet rarely scrutinised, established trust in AI-generated outputs may 
drive a shift in focus, with the expectation that errors or miscalculations will still prompt 
corrective actions to ensure sound decision making.

In parallel, as trust in AI solidifies, the emphasis on explainability may similarly evolve. While 
transparency will remain important, its most critical value may emerge during incidents or errors. 
Much like the role of flight data recorders in aviation, explainability is vital for understanding 
failures and enhancing system improvements rather than serving as a constant requirement.

This shift may significantly influence PV decision making, emphasising timely interventions 
and near-real-time root cause analysis. Looking ahead, organisations may need to balance the 
benefits of enhanced-AI performance against the degree of transparency required, carefully 
weighing improved efficiency with the need for interpretability in high-stakes decisions.

Data privacy

The right to control one’s personal data is durable and has been widely adopted internationally. 
What is likely to occur in the coming years is that preserving data privacy will become more 
challenging. The trajectory of AI in PV is poised for further rapid growth. The incorporation of 
big data analytics, federated learning, and blockchain will enhance data security, interoperability, 
and global collaboration. For example AI-powered chatbots and virtual assistants will facilitate 
real-time ADR reporting by engaging with patients and HCPs seamlessly.20,21 As noted in 
Chapter 7, leaks of personal data have been increasing in frequency, with some at enormous 
scale.22 The increasing use of online platforms for communications and services has been 
accompanied (in some countries) by a common lack of understanding into how collected 
data are used along with an acquiescence to the risk of data breaches. Breaches have 
occurred for reasons ranging from neglect to criminal intent. In the case of health care data, 
the release of personal data without the individual’s approval carries risks for emotional 
well-being, stigmatisation, and discriminatory treatment.

The pressures to amass and link large health care data sources are compelling, both on 
account of operational efficiencies (assuring consistencies in clinical care as well as medical 
care costs) and the advancement of scientific knowledge. At this time, the use of GenAI is in its 
infancy, and the only certainty is that it will both improve in quality and accelerate in use, as it 
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is applied to many areas of biomedical research and clinical practice, and indeed in our daily 
lives. The use of open LLMs carries particular risks for the unintended disclosure of personal 
data, a topic that is likely to receive attention in coming years as the risk becomes clearer.

Societies will need to balance the pressures for the commoditisation of data to maximise 
learning and therefore better outcomes for patients with AI, with protections against unintended 
disclosure. One possibility is that data sharing will be automated, but that systems have built-
in checks and an obligation to maximise the demonstrable value of the data for the patients 
and/or patients’ carers. Security measures to support anonymisation might incorporate 
blockchain or similar technology to make complete anonymisation possible without a patient 
key to allow all care-relevant data to be safely shared with complete confidence and assurance 
that the Individual’s data are anonymised. Without the appropriate regulatory checks and 
balances, it is also easy to see that these data could easily be misappropriated or abused.

AI’s evolution may usher in an era where access to underlying safety data becomes 
instantaneous, enhancing real-time insights and facilitating seamless data sharing. These 
advancements could significantly improve the timeliness and accuracy of safety assessments. 
However, an opposing scenario is equally plausible, one in which data sharing becomes 
increasingly restricted due to proprietary concerns, legal complexities, or public mistrust. 
As awareness grows regarding data’s value as a commercial asset, particularly in insurance 
and other industries, heightened caution may further constrain data flow. A further challenge 
for data privacy and deployment is heterogeneity of data privacy regulations and data sharing 
across regions.

Balancing these dynamics will be critical. Establishing transparent frameworks that foster 
trust, ensure data integrity, and promote responsible data sharing will be essential to fully 
realise AI’s potential while safeguarding public confidence.

Fairness & Equity

Chapter 8 on fairness and equity considers how and what type of discriminatory biases might 
be identified, addressed and/or prevented arising from the use of AI systems.

Fairness and equity should mean that patients and health care professionals should have 
equal access to all the new and advanced AI technologies.

It is important, as described in the data privacy section above, to ensure that PV with 
ubiquitous AI use is deployed equitably, and that data sharing does not put individuals at 
risk for example, of higher healthcare costs associated with more advanced monitoring, 
genetic profiling and/or personalised risk/remediation, or discrimination for insurance or 
treatment purposes.

AI should help to ensure equal understanding of safety data and its relevance to all patients, 
irrespective of social circumstances and background, and the understanding of benefits and 
risks to specific individuals or subgroups of the population.

Governance & Accountability

Chapter 9 of covers Governance & Accountability including a governance framework grid 
for the lifecycle phases of AI solutions in PV.

The accelerated integration of AI underscores the need for dynamic, risk-based governance 
frameworks capable of near-real-time interventions.
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This is especially true as AI systems become more autonomous and self-determining, 
for example, with automated patient or HCP alerts, which will self-monitor their function and 
output and take preventative measures based on self-detected alerts. Such advancements 
raise critical questions: how will governance, accountability, and human oversight of PV of 
these new technologies evolve in tandem with these capabilities?

Ideally, regulatory authorities and industry leaders in PV will establish robust oversight 
mechanisms to ensure that AI systems in PV are developed and deployed responsibly. 
Safeguards must be in place to protect against data misuse, uphold privacy standards, 
and ensure these technologies ultimately enhance outcomes for patients.

The growing autonomy of AI in PV further emphasises the need for adaptable regulatory 
frameworks. Continuous surveillance, proactive auditing, and rigorous inspection protocols 
will be essential to mitigate risks, uphold patient safety, and protect public health. Achieving 
this will require a shift toward governance models that are as agile and responsive as the 
technologies they seek to manage.

10.4.	Conclusions to the future considerations for 
development and deployment of artificial 
intelligence in pharmacovigilance

Proliferation and deployment of AI and its integration into PV is set to cause a paradigm 
shift in this discipline, which is likely to be focused on rapid or real-time data collection, 
assessment and reporting. For example, providing us with the ability to analyse and extract 
vast quantities of safety data for case reporting and signal detection purposes at a rapid pace. 
This could fundamentally change the way we work to take advantage of these technological 
advances, for example, streamlining processes and causing changes in the wider healthcare 
environment and beyond.

Along with the enormous potential for AI in PV, there are many challenges which warrant 
future consideration, particularly around oversight of autonomous AI systems, and how AI 
may impact data privacy and ethical frameworks. It is critical that the guiding principles 
outlined in this report remain as core considerations, but with the understanding that they 
will need to evolve and adapt with advancements and application of AI in PV and medicine 
in general. This is to ensure AI use in PV remains unbiased, transparent, and secure to 
prevent misuse or accidental harm. The appropriate human oversight, including regulatory 
and ethical safeguards, will be as crucial as the technological advancements being applied.
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Appendix 1.  
GLOSSARY

This glossary provides definitions specific to terms within the context of AI use in PV or 
existing definitions have been simplified for the purpose of this document e.g. technical 
definitions. Refer to the International Council for Harmonization of Technical Requirements for 
Pharmaceuticals for Human Use (ICH) compiled by CIOMS in the Glossary of ICH Terms and 
Definitions and all other relevant glossaries available for any additional terms not described 
within this glossary.

Accountability

Accountability applies to clearly defined roles, responsibilities and liability for organisations 
and/or individuals deploying, operating and managing artificial intelligence systems to 
fulfil Pharmacovigilance obligations. It requires the adoption of appropriate governance 
measures by relevant stakeholders (including but not limited to Regulators, Vendors, 
Users, Developers, Data Providers or Pharmaceutical Companies involved in setting 
policy, developing, deploying, maintaining and managing artificial intelligence systems). 
This ensures operations remain within expected parameters throughout the artificial 
intelligence lifecycle while addressing any unforeseen consequences.

Proposed by CIOMS Working Group XIV.

Adverse event

Any untoward medical occurrence in a patient or clinical investigation subject administered 
a pharmaceutical product and which does not necessarily have a causal relationship with 
this treatment. An adverse event (AE) can therefore be any unfavourable and unintended 
sign (including an abnormal laboratory finding), symptom, or disease temporally associated 
with the use of a medicinal (investigational) product, whether or not related to the medicinal 
(investigational) product.

Adopted from: Council for International Organizations of Medical Sciences (CIOMS). Glossary of ICH terms and 
definitions. Geneva: Council for International Organizations of Medical Sciences; 2024. (Full text accessed 4 
April 2025)

Adverse reaction

A response to a medicinal product that is noxious and unintended, meaning a causal 
relationship between the product and the event is at least a reasonable possibility.

Modified from: Council for International Organizations of Medical Sciences (CIOMS). Glossary of ICH terms and 
definitions. Geneva: Council for International Organizations of Medical Sciences; 2024. (Full text accessed 4 
April 2025)
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https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/
https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/
https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/
https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/


Agent in AI

Software program that interacts with its environment to collect data and utilize that data 
to perform specific tasks to meet predetermined goals. Agents can act independently 
or collaborate to achieve a common goal.

Modified from: Amazon Web Services (AWS). What are AI agents? [Internet]. Seattle (WA): Amazon Web 
Services; 2024. (Webpage accessed 15 October 2025)

Artificial intelligence literacy

Having the essential abilities needed to understand, learn and work in a digital world 
through AI-driven technologies.

Modified from: Ng DTK, Leung JKL, Chu SKW, Qiao MS. Conceptualizing AI literacy: an exploratory review. 
Comput Educ Artif Intell. 2021;2:100041. https://doi.org/10.1016/j.caeai.2021.100041. (Journal full text)

Artificial intelligence system

An artificial intelligence (AI) system is a machine-based system that, for explicit or implicit 
objectives, infers, from the input it receives, how to generate outputs such as predictions, 
content, recommendations, or decisions that can influence physical or virtual environments.

Modified from: Organisation for Economic Co-operation and Development (OECD). Explanatory memorandum 
on the updated OECD definition of an AI system. (OECD Artificial Intelligence Papers, No. 8.) Paris: OECD 
Publishing; 2024. (PDF accessed 15 October 2025) https://doi.org/10.1787/623da898-en.

Note: In the context of pharmacovigilance, the use of AI systems and activities is aimed 
at enhancing drug safety monitoring, patient safety and regulatory compliance.

Augmented intelligence / Intelligence augmentation

Augmented intelligence is a conceptualization of artificial intelligence that focuses on 
artificial intelligence’s assistive role. It emphasizes the use of artificial intelligence for 
enhancing, i.e. augmenting or amplifying human intelligence, rather than replacing it. 
Inherent in this view is the recognition that artificial intelligence and humans work together 
in a human-centered partnership, where each one can perform certain tasks better than 
either could alone.

Combined from:
	– Madni AM. Augmented intelligence: a human productivity and performance amplifier in systems engineering 

and engineered human–machine systems. In: Systems engineering for the digital age: practitioner 
perspectives. Hoboken (NJ): Wiley; 2023;Oct 8. p. 375-391. https://doi/10.1002/9781394203314.ch17 
(Chapter abstract)

	– World Medical Association (WMA). WMA statement on augmented intelligence in medical care. Ferney-Voltaire 
(France): World Medical Association; 2019. (Webpage accessed 3 April 2025)
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Automation bias or automation complacency

Automation bias and automation complacency are overlapping manifestations of 
automation-induced phenomena, where human attention plays a central role. Both refer 
to the human tendency to favour or trust suggestions from automated decision-making 
systems over non-automated contradictory information even when it is correct. They can 
involve attentional bias directed toward the automated output, or insufficient attention 
and monitoring of the automated output, especially in context of multi-tasking where 
manual tasks compete with the human expert’s attention.

Combined from:
	– Parasuraman R, Manzey DH. Complacency and bias in human use of automation: an attentional integration. 

Hum Factors. 2010;Jun;52(3):381-410. https://doi.org/10.1177/0018720810376055 (Journal full text)
	– Cummings ML. Automation bias in intelligent time-critical decision support systems. In: Decision making in 

aviation. Boca Raton (FL): Routledge; 2017;Jul5. p. 289-294. (Chapter abstract accessed 4 April 2025)

Bias

The tendency of a measurement process to over- or under-estimate the value of a 
population parameter.

Adopted from: Council for International Organizations of Medical Sciences (CIOMS). Glossary of ICH terms and 
definitions. Geneva: Council for International Organizations of Medical Sciences; 2024. (Full text accessed 4 
April 2025)

In AI, bias may be systematic difference in treatment of certain objects, people, or groups 
in comparison to others (ISO/IEC DIS 22989). (…) Bias can be introduced into study 
design, conduct or analysis. Sources of bias include selection bias (of study sample), 
operational bias, and analyses that do not account for missing data.

Modified from: International Medical Device Regulators Forum (IMDRF). Machine learning-enabled medical 
devices — a subset of artificial intelligence-enabled medical devices: key terms and definitions. Geneva: 
International Medical Device Regulators Forum; 2021. (Full text accessed 3 April 2025)

In the context of artificial intelligence, bias can occur when the artificial intelligence data 
or algorithms reflect or perpetuate existing social inequalities, leading to discriminatory 
or unfair artificial intelligence outputs.

Modified from: University of Saskatchewan. Generative artificial intelligence: glossary of AI-related terms. 
Saskatoon (SK): University of Saskatchewan; 2024. (Webpage accessed 4 April 2025)

Black-Box model

An AI model that provides results based on received data but the logic used to provide 
those results cannot be determined or inferred on how it achieved those results.

Proposed by CIOMS Working Group XIV.
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https://libguides.usask.ca/gen_ai/glossary#section_B


Black Swan event

Event of extreme impact that, although outside the realm of regular expectations (i.e. 
prospectively unpredictable), prompts humans to concoct explanations for its occurrence 
after the fact, making it seemingly explainable and predictable (i.e. retrospectively distorted).

Combined from:
	– Kjoersvik O, Bate A. Black swan events and intelligent automation for routine safety surveillance. Drug Saf. 

2022;May;45(5):419-427. https://doi.org/10.1007/s40264-022-01169-0 (Journal full text)
	– Taleb NN. Black swans and the domains of statistics. Am Stat. 2007;Aug 1;61(3):198-200. 

doi:10.1198/000313007X219996. (Journal full text)

Business continuity plan

Set of provisions and systems for the prevention of / recovery from events that could 
severely impact on an organisation’s staff and infrastructure in general or on the structures 
and processes for pharmacovigilance in particular, including the urgent exchange of 
information within an organisation, amongst organisations sharing pharmacovigilance 
tasks as well as between MAHs and competent authorities.

Modified from: Heads of Medicines Agencies (HMA), European Medicines Agency (EMA). Guideline on good 
pharmacovigilance practices (GVP): Module I – pharmacovigilance systems and their quality systems. London: 
European Medicines Agency; 2012.v (Full text accessed 3 April 2025)

Change management

Change Management describes processes, methods and techniques designed and used 
to plan, implement and control changes to organizational structures and/or business 
processes. Methodologies span around people, process and culture.

Typically Change Management includes following components: Leadership 
alignment, Stakeholder engagement, Communication, Training, Impact Assessment, 
Continuous improvement.

Modified from: International Organization for Standardization (ISO). What is change management: a quick guide. 
Geneva: International Organization for Standardization; 2023. (Webpage accessed 27 October 2025)

Class imbalance

Imbalance between categories in classification tasks. This affects model performance 
metrics, e.g., by the fact that a model always predicting the same outcome will be 99% 
accurate if 99% of test cases belong to the corresponding class.

Adopted from: European Medicines Agency (EMA). Reflection paper on the use of artificial intelligence (AI) in the 
medicinal product lifecycle. Amsterdam: European Medicines Agency; 2024. (Full text accessed 3 April 2025)

Cluster analysis

A machine learning method that partitions differing data elements into sets of data 
elements based on similarities to identify patterns that are not immediately evident when 
not combined.

Derived from: Jain AK. Data clustering: 50 years beyond K-means. Pattern Recognit Lett. 2010;31(8):651-666. 
https://doi.org/10.1016/j.patrec.2009.09.011 (Journal full text)
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https://doi.org/10.1016/j.patrec.2009.09.011
https://www.sciencedirect.com/science/article/abs/pii/S0167865509002323?via%3Dihub


Computerized system validation

Process of establishing and documenting that the specified requirements of a computerized 
system are fulfilled consistently from design until decommissioning of the system and/or 
transition to a new system. The approach to validation should focus on a risk assessment 
that takes into consideration the intended use of the system and the potential of the 
system to affect human subject protection and reliability of trial results.

Modified from: International Council for Harmonisation of Technical Requirements for Pharmaceuticals for 
Human Use (ICH). Integrated addendum to ICH E6(R1): guideline for good clinical practice E6(R2). Geneva: 
International Council for Harmonisation; 2016. (Full text accessed 3 April 2025)

Confirmation bias

Confirmation bias is the tendency to give greater weight to data that support preliminary 
assumptive results, while failing to seek or dismissing contradictory evidence.

Modified from: Elston DM. Confirmation bias in medical decision-making. Journal of the American Academy of 
Dermatology. 2020;Mar1;82(3):572. https://doi:10.1016/j.jaad.2019.06.1286 (Journal full text)

Cross-validation

Resampling method used to assess the generalisation ability of a machine learning model 
and prevent overfitting.

Modified from: Berrar D. Cross-validation. Preprint submitted to Encyclopedia of Bioinformatics and 
Computational Biology, 2nd ed. Amsterdam: Elsevier; 2019;542-545. (Full text accessed 3 April 2025).

Note: This is an alternative to maintaining separate training and validation data sets to 
provide a more efficient use of data during development.

Data anonymisation

Anonymisation of personal data is the process whereby both direct and indirect personal 
identifiers are removed, and technical safeguards are used to strive for zero risk of re-
identification.

Modified from: World Health Organization (WHO). Ethics and governance of artificial intelligence for health: 
guidance on large multi-modal models. Geneva: World Health Organization; 2024. (Webpage accessed 3 April 
2025)

Data drift

Change in the input data distribution a deployed model receives over time, which can cause 
the model’s performance to degrade. This occurs when the properties of the underlying 
data change. Data drift can affect the accuracy and reliability of predictive models.

Modified from: U.S. Food and Drug Administration (FDA). FDA digital health and artificial intelligence glossary 
– educational resource. Silver Spring (MD): U.S. Food and Drug Administration; 2024. (Webpage accessed 3 
April 2025)

ARTIFICIAL INTELLIGENCE IN PHARMACOVIGILANCE

APPEN
D

IX 1. G
lossary   

111

https://database.ich.org/sites/default/files/E6_R2_Addendum.pdf
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Data privacy

Data privacy refers to measures taken to protect the fundamental right of individuals to the 
protection of their personal information. In the setting of PV, these measures emphasise 
the protection of sensitive and personal data (including health data).

Proposed by CIOMS Working Group XIV.

Decision tree

A model which categorizes data into various subsets to identify a potential structure, 
pattern and relationship among the data.

Modified from: Dikshit A, Pradhan B, Santosh M. Artificial neural networks in drought prediction in the 21st 
century: a scientometric analysis. Appl Soft Comput. 2022;114:108080. https://doi.org/10.1016/j.
asoc.2021.108080 (Journal full text)

Deep learning

A variant of machine learning involving neural networks with multiple layers of processing 
units known as artificial neurons, or ‘perceptrons’ (nodes), which together facilitate extraction 
of higher features of unstructured input data (for example, images, video and text).

Adopted from: Thirunavukkarasu AJ, Ting DS, Elangovan K, Gutierrez L, Tan TF, Ting DS. Large language 
models in medicine. Nat Med. 2023;Aug;29(8):1930-1940. https://doi.org/10.1038/s41591-023-02448-8 
(Journal full text)

Approach to creating rich hierarchical representations through the training of neural 
networks with many hidden layers.

Adopted from: European Medicines Agency (EMA). Reflection paper on the use of Artificial Intelligence (AI) in 
the medicinal product lifecycle. 2024. (Full text accessed 3 April 2025)

Dynamic (adaptive or continual learning) AI model

AI model that continuously learns or adapts on an ongoing basis based on exposure to new 
data or changing environments during the operational phase of the AI systems lifecycle.

Modified from: International Medical Device Regulators Forum (IMDRF). Machine Learning-enabled Medical 
Devices - A subset of Artificial Intelligence-enabled Medical Devices: Key Terms and Definitions. 2021. (Full text 
accessed 3 April 2025)

Explainability

The degree to which humans can understand the factors and logic that have led to a 
specific outcome or that play a role in the general operation of an AI system.

Proposed by CIOMS Working Group XIV.
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Fairness and equity

Fairness is the avoidance or mitigation of bias to provide comparable results considering 
differences for a diverse group or population. Equity is the recognition of differences 
in a group or population and accounting for those differences to provide a fair result. 
This requires awareness and adherence to the ideas of impartiality, equality, non-
discrimination, diversity, justice and lawfulness. Avoidance and mitigation of unfair bias, 
discriminatory or unjust social wellbeing and environmental impacts and/or outcomes 
should be considered throughout the whole artificial intelligence lifecycle.

Proposed by CIOMS Working Group XIV.

False negative

A data point incorrectly identified as not belonging to a class of interest when it does 
belong to a class of interest.

Proposed by CIOMS Working Group XIV.

False positive

A data point incorrectly identified as belonging to a class of interest when it does not 
belong to a class in interest.

Proposed by CIOMS Working Group XIV.

Feature

A measurable property or characteristic of the data or engineered through data processing 
or transformation of the data that is used to train a model.

Proposed by CIOMS Working Group XIV.

Generative artificial intelligence application

A computerised application using artificial intelligence methods trained on data sets that 
can be used to generate new content, such as text, images, video or conduct discriminative 
tasks (e.g. classification) based on prompts provided by the user.

Proposed by CIOMS Working Group XIV.

Generative Large Language Models

Probabilistic models trained on a large number of parameters that enable the processing 
of natural language through algorithms specifically designed to generate text.

Modified from: Chiarello F, Giordano V, Spada I, Barandoni S, Fantoni G. Future applications of generative 
large language models: a data-driven case study on ChatGPT. Technovation. 2024;133:103002. https://doi.
org/10.1016/j.technovation.2024.103002 (Journal full text)
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Governance (for AI)

Governance refers to the human management system used to control and direct the 
use of AI in the PV system. An AI governance framework requires implementation of risk 
management practices and policies to ensure adherence to the AI guiding principles.

Proposed by CIOMS Working Group XIV.

Hallucination

In generative AI, hallucinations are generated content that is presented as authoritative 
but in actuality the information is incorrect or misleading.

 Proposed by CIOMS Working Group XIV

Human agency

Human agency is the capacity for human beings to make choices out of their own volition 
and to follow those choices to action.

Proposed by CIOMS Working Group XIV.

Human-in-command

The capability of a human to oversee the overall activity of an artificial intelligence system, 
including its broader economic, societal, legal and ethical impact, and the ability to decide 
if, when, and how to use an artificial intelligence system.

Modified from: European Commission. Ethics guidelines for trustworthy AI. Brussels: European Commission; 
2019. (Webpage accessed 3 April 2025)

Human-in-the-loop

The capability for human intervention in every decision cycle of the artificial intelligence system.

Adopted from: European Commission. Ethics guidelines for trustworthy AI. Brussels: European Commission; 
2019. (Webpage accessed 3 April 2025)

Human-on-the-loop

The capability for human intervention during the design of an artificial intelligence system 
and monitoring of its operation.

Modified from: European Commission. Ethics guidelines for trustworthy AI. Brussels: European Commission; 
2019. (Webpage accessed 3 April 2025)

Human oversight

Human oversight refers to the expected role of humans in the design, implementation, 
monitoring, and analysis of AI in PV. It requires a framework to manage performance 
and to detect and mitigate potential issues related to the AI system.

Proposed by CIOMS Working Group XIV.
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Individual Case Safety Report

The complete information provided by a reporter at a certain point in time to describe an 
event or incident of interest. The report can include information about a case involving 
one subject or group of subjects.

Council for International Organizations of Medical Sciences (CIOMS). Glossary of ICH terms and definitions. 
Geneva: Council for International Organizations of Medical Sciences; 2024. (Full text accessed 4 April 2025)

Knowledge graph

A heterogeneous knowledge base consisting of triples (facts) each comprised of object 
pairs and connecting relationships modelled through graphs and ontologies (a standardized 
machine readable semantic framework for representing all objects, and their properties 
and relationships in a domain of knowledge), which extract new insights from existing 
data sets via their integration.

Modified from: Hauben M, Rafi M. Knowledge graphs in pharmacovigilance: a step-by-step guide. Clin Ther. 
2024;46(7):538-543. https://doi.org/10.1016/j.clinthera.2024.03.006 (Journal full text)

Large language model

A type of artificial intelligence model using deep neural networks to learn the relationships 
between words in natural language, using large datasets of text to train, these include 
those with or without decoders.

Derived from: Heads of Medicines Agencies (HMA). European Medicines Agency (EMA). Guiding principles on 
the use of large language models in regulatory science and for medicines regulatory activities; 2024. (Full 
text accessed 4 April 2025)

Machine learning

Computational process of optimising the parameters of a model from data, which is 
a mathematical construct generating an output based on input data. Machine learning 
approaches include, for instance, supervised, unsupervised and reinforcement learning, 
using a variety of methods including deep learning with neural networks.

Adopted from: European Medicines Agency (EMA). Reflection paper on the use of Artificial Intelligence (AI) in 
the medicinal product lifecycle; 2024. (Full text accessed 3 April 2025)

(AI) Model

Mathematical or computational method with parameters (weights) arranged in an 
architecture that allows learning of patterns (features) from training data to provide an 
assigned output.

Modified from: European Medicines Agency (EMA). Reflection paper on the use of Artificial Intelligence (AI) in 
the medicinal product lifecycle; 2024. (Full text accessed 3 April 2025)
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https://www.ema.europa.eu/en/documents/other/guiding-principles-use-large-language-models-regulatory-science-medicines-regulatory-activities_en.pdf
https://www.ema.europa.eu/en/documents/other/guiding-principles-use-large-language-models-regulatory-science-medicines-regulatory-activities_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf


Model drift (Concept Drift)

A process where the model performance changes overtime either in a positive or negative 
performance outcome.

Modified from: Wang S, Schlobach S, Klein M. Concept drift and how to identify it. J Web Semant. 
2011;9(3):247–265. doi:10.1016/j.websem.2011.05.003 (Journal full text)

Natural language processing

Field of artificial intelligence focusing on the interaction between computers and 
human language.

Adopted from: Thirunavukkarasu AJ, Ting DS, Elangovan K, Gutierrez L, Tan TF, Ting DS. Large language 
models in medicine. Nat Med. 2023;Aug;29(8):1930-1940. https://doi.org/10.1038/s41591-023-02448-8 
(Journal full text)

Negative control

A real-world data point sampled as not belonging to the class of interest or deliberately 
created to not trigger a positive response from an artificial intelligence model.

Proposed by CIOMS Working Group XIV.

Neural network

Computing system inspired by biological neural networks, comprising ‘perceptrons’ 
(nodes), usually arranged in layers, communicating with one another and performing 
transformations upon input data.

Adopted from: Thirunavukkarasu AJ, Ting DS, Elangovan K, Gutierrez L, Tan TF, Ting DS. Large language 
models in medicine. Nat Med. 2023;Aug;29(8):1930-1940. (Full text accessed 13 November 2025)

Non-deterministic AI

An AI system in which the same input is not guaranteed to produce the same output, 
due largely to the inherent incorporation of randomness, probabilistic decision-making, 
or underlying stochastic algorithms in its design.

Proposed by CIOMS Working Group XIV.

Open and Closed Large Language Models

Closed models do not release the model weights to the public and access to these 
weights is restricted under proprietary licenses.

Open models provide access to model weights and are governed by non-proprietary 
license enabling adaptation and ability to further investigation the model.

Modified from: Xu J, Ding Y, Bu Y. Position: open and closed large language models in healthcare [preprint]. 
arXiv. 2025;Jan17. doi:10.48550/arXiv.2501.09906. (Journal full text)
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https://www.nature.com/articles/s41591-023-02448-8
https://www.nature.com/articles/s41591-023-02448-8
https://doi.org/10.1038/s41591-023-02448-8
https://doi:10.48550/arXiv.2501.09906
https://arxiv.org/abs/2501.09906


Overfitting

Learning details from training data that reflect noise and will not generalize to new data.

Modified from: European Medicines Agency (EMA). Reflection paper on the use of Artificial Intelligence (AI) in 
the medicinal product lifecycle; 2024. (Full text accessed 3 April 2025)

Parameter, hyper-parameter

Variable within a machine learning model that is updated — usually automatically — during 
training to maximize performance. In deep learning, parameters are the ‘weights’ or data 
transforming functions comprising neural network nodes.

Adopted from: Thirunavukkarasu AJ, Ting DS, Elangovan K, Gutierrez L, Tan TF, Ting DS. Large language 
models in medicine. Nat Med. 2023 Aug;29(8):1930-1940. https://doi.org/10.1038/s41591-023-02448-8 
(Journal full text)

Hyper-parameters are parameters that are used to configure a model. Unlike model 
parameters, they cannot be directly estimated from data learning and must be set before 
training a machine learning model. Hyper-parameter tuning is a step often required to 
build effective ML models.

Modified from Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: theory and 
practice. Neurocomputing. 2020;Nov20;415:295-316. https://doi.org/10.1016/j.neucom.2020.07.061 
(Journal full text accessed 15 October 2025)

Performance degradation

When results from an artificial intelligence system either fail or diminish in their ability to 
achieve the expected or required results as achieved earlier.

Proposed by CIOMS Working Group XIV.

Personal data

‘Personal data’ means any information relating to an identified or identifiable natural 
person (‘data subject’). Information such as a name, an identification number, location 
data, an online identifier or to one or more factors specific to the physical, physiological, 
genetic, mental, economic, cultural or social identity of that natural person are examples 
of personal data. Sensitive (personal) data refers to special categories of personal data.

Modified from: European Parliament, Council of the European Union. Regulation (EU) 2016/679 of the 
European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to 
the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC 
(General Data Protection Regulation), Art. 4(1). Off J Eur Union. 2016;L 119:1–88. (Webpage accessed 4 April 
2025)

Pharmacovigilance

The science and activities relating to the detection, assessment, understanding and 
prevention of adverse effects or any other drug-related problem.

Adopted from: Council for International Organizations of Medical Sciences (CIOMS). CIOMS cumulative 
glossary, with a focus on pharmacovigilance. Version 2.1. Geneva: Council for International Organizations of 
Medical Sciences; 2024. https://doi.org/10.56759/ocef1297 (Full text)
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https://doi.org/10.1038/s41591-023-02448-8
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https://doi.org/10.1016/j.neucom.2020.07.061
https://www.sciencedirect.com/science/article/abs/pii/S0925231220311693
https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng
https://doi.org/10.56759/ocef1297
http://applewebdata:/92D2338F-5116-457B-BA15-49EF35CDD8A0/(Full%20text)


Pharmacovigilance system

System used by an organisation to fulfil its legal tasks and responsibilities in relation to 
pharmacovigilance and designed to monitor the safety of authorised medicinal products 
and detect any change to their risk-benefit balance.

Adopted from: Heads of Medicines Agencies (HMA), European Medicines Agency (EMA). Guideline on good 
pharmacovigilance practices (GVP) Module I – pharmacovigilance systems and their quality systems. London: 
European Medicines Agency; 2012. (Full text accessed 3 April 2025)

Precision

Proportion of retrieved samples which are annotated as positive controls in the reference 
set, calculated as the ratio between correctly classified positive controls and all samples 
assigned to that class. Precision is also known as positive predictive value (PPV).

Modified from: Hicks SA, Strümke I, Thambawita V, Hammou M, et al. On evaluation metrics for medical 
applications of artificial intelligence. Sci Rep. 2022;Apr 8;12(1):5979. https://doi.org/10.1038/s41598-022-
09954-8 (Journal full text)

Positive control

A real-world data point sampled as belonging to the class of interest or deliberately 
created to trigger a positive response from an artificial intelligence model.

Proposed by CIOMS Working Group XIV.

Predictive model

A machine learning algorithm that analyzes data to identify patterns and trends, allowing 
it to make predictions about future outcomes or events based on input data.

Modified from: De Hond AA, Leeuwenberg AM, Hooft L, Kant IM,et al. Guidelines and quality criteria for artificial 
intelligence-based prediction models in healthcare: a scoping review. NPJ digital medicine. 2022;Jan10;5(1):2. 
https://doi.org/10.1038/s41746-021-00549-7 (Journal full text)

Quality management system

Part of the pharmacovigilance system utilizing a framework of polices, processes and 
resources to maintain and improve safety and efficacy of any product or system.

Derived from: International Council for Harmonisation of Technical Requirements for Pharmaceuticals for 
Human Use (ICH). Pharmaceutical quality system Q10. Geneva: ICH; 2008. (PDF accessed 15 October 2025)

Real-world data

Data relating to patient health status and/or the delivery of health care routinely collected 
from a variety of sources. Examples of RWD include data derived from electronic health 
records (EHRs); medical claims and billing data; data from product and disease registries; 
patient-generated data, including from mobile devices and wearables; and data gathered 
from other sources that can inform on health status (e.g., genetic and other biomolecular 
phenotyping data collected in specific health systems).

Adopted from: Council for International Organizations of Medical Sciences (CIOMS). Glossary of ICH terms and 
definitions. Geneva: Council for International Organizations of Medical Sciences; 2024. (Full text accessed 4 
April 2025)
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https://doi.org/10.1038/s41598-022-09954-8
https://doi.org/10.1038/s41598-022-09954-8
https://www.nature.com/articles/s41598-022-09954-8
https://doi.org/10.1038/s41746-021-00549-7
https://www.nature.com/articles/s41746-021-00549-7
https://database.ich.org/sites/default/files/Q10%20Guideline.pdf?
https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/
https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/


Recall

Proportion of positive controls correctly classified as such, calculated as the ratio between 
correctly classified positive controls and all positive controls. Also known as sensitivity 
or true positive rate (TPR).

Modified from: Hicks SA, Strümke I, Thambawita V, Hammou M, Riegler MA, Halvorsen P, Parasa S. On 
evaluation metrics for medical applications of artificial intelligence. Sci Rep. 2022;Apr8;12(1):5979. https://
doi.org/10.1038/s41598-022-09954-8 (Journal full text)

Red team

A group of people authorized and organized to emulate a potential adversary’s attack or 
exploitation capabilities against an enterprise’s security posture. The Red Team’s objective 
is to improve enterprise cybersecurity by demonstrating the impacts of successful 
attacks and by demonstrating what works for the defenders (i.e., the Blue Team) in an 
operational environment. Also known as Cyber Red Team.

Adopted from: National Institute of Standards and Technology (NIST). Glossary [Internet]. Gaithersburg (MD): 
NIST Computer Security Resource Center; 2025. (Webpage accessed 23 October 2025)

Reproducibility

The ability to achieve consistent results when analysis is repeated under the same 
conditions. Data and computer codes are used to regenerate the results.

Derived from: National Academies of Sciences, Engineering, and Medicine; Policy and Global Affairs; 
Committee on Science, Engineering, Medicine, and Public Policy; Board on Research Data and Information; 
Division on Engineering and Physical Sciences; Committee on Applied and Theoretical Statistics; Board on 
Mathematical Sciences and Analytics; Division on Earth and Life Studies; Nuclear and Radiation Studies 
Board; Division of Behavioral and Social Sciences and Education; Committee on National Statistics; Board 
on Behavioral, Cognitive, and Sensory Sciences; Committee on Reproducibility and Replicability in Science. 
Reproducibility and replicability in science. Washington (DC): National Academies Press (US); 2019;May 7. 
Chapter 3, Understanding reproducibility and replicability. (Chapter full text accessed 27 October 2025)

Risk-based approach

A risk-based approach acknowledges the potential hazards that artificial intelligence 
systems can pose and recognises that different use cases present varying types and 
levels of risk in the execution of core PV tasks. This necessitates a risk assessment 
that identifies, prioritises, and manages potential risks that could negatively impact a 
pharmacovigilance system’s behaviour and results, taking into consideration process 
controls. A risk is characterised by both the anticipated impact and the likelihood of 
negative outcomes.

This approach also supports procedures to identify and reduce errors and biases in a 
way that is proportionate to their risk. It influences the implementation strategies of AI 
systems, which should generally be commensurate with the identified risk.

Proposed by CIOMS Working Group XIV.
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https://www.ncbi.nlm.nih.gov/books/NBK547546/


Robustness

A system reliably achieves its intended objectives while accounting for variations in data.

Proposed by CIOMS Working Group XIV.

Secondary Use of Data

Use of existing data for a different purpose than the one for which they were originally 
collected. In the setting of AI this could include data used for the purposes of training 
or validating a model.

Modified from: Council for International Organizations of Medical Sciences (CIOMS). Glossary of ICH terms and 
definitions. Geneva: Council for International Organizations of Medical Sciences; 2024. (Full text accessed 4 
April 2025)

Semantic vector

A mathematical representation of a word, phrase, or document as an identifier, where the 
identifier’s position in the high-dimensional space captures the meaning or relationship 
of that word/phrase, allowing artificial intelligence systems to understand the context 
and similarity between different pieces of text based on their meaning.

Derived from: Cohen T, Widdows D. Empirical distributional semantics: methods and biomedical applications. J 
Biomed Inform.2009;Apr1;42(2):390-405. https://doi.org/10.1016/j.jbi.2009.02.002 (Journal full text)

Sensitivity analysis

An assessment technique used to evaluate how changes in input data or model parameters 
affect the output of an artificial intelligence model.

Proposed by CIOMS Working Group XIV.

Signal

Information that arises from one or multiple sources (including observations and 
experiments), that suggests a new potentially causal association, or a new aspect of 
a known association, between an intervention and an event or set of related events, 
either adverse or beneficial, that is judged to be of sufficient likelihood to justify further 
action to verify.

Modified from: Council for International Organizations of Medical Sciences (CIOMS). Practical aspects of signal 
detection in pharmacovigilance. Geneva: Council for International Organizations of Medical Sciences; 2010. 
(Full text accessed 15 October 2025)

Static AI model

AI model that remains unchanged once deployed.

Proposed by CIOMS Working Group XIV.
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Supervised learning

Machine learning that makes use of labelled data during training. (ISO/IEC DIS 22989).

Adopted from: International Medical Device Regulators Forum (IMDRF). Machine learning-enabled medical 
devices — a subset of artificial intelligence-enabled medical devices: key terms and definitions. Geneva: 
International Medical Device Regulators Forum; 2021. (Full text accessed 3 April 2025)

Test dataset

A subset of the data that is never shown to the machine learning model during training, 
used to verify what the model has learned. (Modified from ISO/IEC DIS 22989).

Adopted from: International Medical Device Regulators Forum (IMDRF). Machine learning-enabled medical 
devices — a subset of artificial intelligence-enabled medical devices: key terms and definitions. Geneva: 
International Medical Device Regulators Forum; 2021. (Full text accessed 3 April 2025)

Traceability (AI)

The ability to track and document the data, processes, classifications used to create an 
artificial intelligence model and derived output.

Proposed by CIOMS Working Group XIV.

Training

Process intended to establish or to improve the parameters of a machine learning model, 
based on a machine learning algorithm, by using training data. (Modified from ISO/IEC 
DIS 22989).

Adopted from: International Medical Device Regulators Forum (IMDRF). Machine learning-enabled medical 
devices — a subset of artificial intelligence-enabled medical devices: key terms and definitions. Geneva: 
International Medical Device Regulators Forum; 2021. (Full text accessed 3 April 2025)

Training dataset

Data used specifically in the context of machine learning: it serves as the raw material 
from which the machine learning algorithm extracts its model to address the given task.

Adopted from: European Medicines Agency (EMA). Reflection paper on the use of Artificial Intelligence (AI) in 
the medicinal product lifecycle; 2024. (Full text accessed 3 April 2025)

Transparency

Transparency regarding AI involves disclosing information between organisations or 
individuals. This includes sharing relevant documentation of the AI system lifecycle (i.e. 
design, development, evaluation, deployment, operation, re-training, maintenance and 
decommission) to facilitate traceability and providing stakeholders with enough information 
to have a general understanding of the AI system, its use, risks, limitations, perceived 
benefits and impact on their rights.

Proposed by CIOMS Working Group XIV.
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Unsupervised learning

Machine learning that makes use of unlabelled data during training. (ISO/IEC DIS 22989)

Adopted from: International Medical Device Regulators Forum (IMDRF). Machine learning-enabled medical 
devices — a subset of artificial intelligence-enabled medical devices: key terms and definitions. Geneva: 
International Medical Device Regulators Forum; 2021. (Full text accessed 3 April 2025)

Validity

Validity means that a system achieves its intended purpose within acceptable parameters. 
It requires predefining acceptable performance levels, selecting appropriate data for 
model training and/or testing, assessing model performance in a realistic setting and 
integrating the system into an ongoing quality assurance process.

Proposed by CIOMS Working Group XIV.

Validation dataset

Data used to tune hyperparameters or to validate some algorithmic choices (rule 
design, etc.).

Derived from: International Organization for Standardization (ISO). ISO/IEC DIS 22989. Information technology 
— artificial intelligence - artificial intelligence concepts and terminology. Geneva: International Organization for 
Standardization; 2022. (Webpage accessed 4 April 2025)

Zero-shot learning

Artificial intelligence developed to complete tasks without exposure to any previous 
examples of the task.

Derived from: Thirunavukkarasu AJ, Ting DS, Elangovan K, Gutierrez L, Tan TF, Ting DS. Large language 
models in medicine. Nat med. 2023;Aug;29(8):1930-1940. https://doi.org/10.1038/s41591-023-02448-8 
(Journal full text)
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Appendix 2. COMPARISON TABLE OF 
GUIDING PRINCIPLES

Table 10:	 Comparison of CIOMS Working Group XIV guiding principles for artificial 
intelligence across regional and country government institutions, 
and international organisations – Extracted description of principles

Source: CIOMS Working Group XIV
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nt

ex
t.

AI
 s

ys
te

m
s 

sh
ou

ld
 

fu
nc

tio
n 

in
 a

 
ro

bu
st

, s
ec

ur
e 

an
d 

sa
fe

 w
ay

 
th

ro
ug

ho
ut

 th
e 

AI
 li

fe
cy

cl
e,

 
an

d 
ris

ks
 

sh
ou

ld
 b

e 
co

nt
in

ua
lly

 
id

en
tifi

ed
, 

as
se

ss
ed

 a
nd

 
m

an
ag

ed
.

W
he

re
 a

pp
ro

-
pr

ia
te

, u
se

rs
, 

im
pa

ct
ed

 th
ird

 
pa

rt
ie

s 
an

d 
ac

to
rs

 in
 th

e 
AI

 li
fe

cy
cl

e 
sh

ou
ld

 b
e 

ab
le

 
to

 c
on

te
st

 a
n 

AI
 d

ec
is

io
n 

or
 

ou
tc

om
e 

th
at

 
is

 h
ar

m
fu

l o
r 

cr
ea

te
s.

Au
to

m
at

ed
 

sy
st

em
s…

”in
 

de
si

gn
 a

nd
 

de
ve

lo
pm

en
t, 

pr
e-

de
ve

l-
op

m
en

t a
nd

 
on

-g
oi

ng
 

di
sp

ar
ity

 
te

st
in

g 
an

d 
m

iti
ga

tio
n,

 
an

d 
cl

ea
r 

or
ga

ni
za

tio
na

l 
ov

er
si

gh
t”

Fo
rm

al
 

pr
oc

es
se

s 
fo

r 
hu

m
an

 c
on

tr
ol

 
an

d 
re

vi
ew

 
of

 a
ut

om
at

ed
 

de
ci

si
on

s 
ar

e 
m

an
da

to
ry

.

Th
e 

pr
in

ci
pl

e 
of

 a
ut

on
om

y 
re

qu
ire

s 
th

at
 

an
y 

ex
te

ns
io

n 
of

 m
ac

hi
ne

 
au

to
no

m
y 

no
t 

un
de

rm
in

e 
hu

-
m

an
 a

ut
on

om
y.

 
In

 th
e 

co
nt

ex
t 

of
 h

ea
lth

 c
ar

e,
 

th
is

 m
ea

ns
 

th
at

 h
um

an
s 

sh
ou

ld
 r

em
ai

n 
in

 fu
ll 

co
nt

ro
l 

of
 h

ea
lth

-c
ar

e 
sy

st
em

s 
an

d 
m

ed
ic

al
 d

ec
i-

si
on

s.
H

um
an

 
ov

er
si

gh
t m

ay
 

de
pe

nd
 o

n 
th

e 
ris

ks
 a

ss
oc

i-
at

ed
 w

ith
 a

n 
AI

 s
ys

te
m

 b
ut

 
sh

ou
ld

 a
lw

ay
s 

be
 m

ea
ni

ng
fu

l 
an

d 
sh

ou
ld

 
th

us
 in

cl
ud

e 
ef

fe
ct

iv
e,

 
tr

an
sp

ar
en

t 
m

on
ito

rin
g 

of
 

hu
m

an
 v

al
ue

s 
an

d 
m

or
al

 c
on

-
si

de
ra

tio
ns

.

M
ec

ha
ni

sm
s 

sh
ou

ld
 b

e 
in

 p
la

ce
, 

as
 a

pp
ro

pr
i-

at
e,

 to
 e

ns
ur

e 
th

at
 if

 A
I 

sy
st

em
s 

ris
k 

ca
us

in
g 

un
du

e 
ha

rm
 o

r 
ex

hi
b-

it 
un

de
si

re
d 

be
ha

vi
ou

r, 
th

ey
 c

an
 b

e 
ov

er
rid

de
n,

 
re

pa
ire

d,
 a

nd
/

or
 d

ec
om

m
is

-
si

on
ed

 s
af

el
y 

as
 n

ee
de

d.
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Ex
am

pl
es

 o
f r

eg
io

na
l -

 a
nd

 c
ou

nt
ry

 g
ov

er
nm

en
t i

ns
tit

ut
io

ns
’, 

an
d 

in
te

rn
at

io
na

l o
rg

an
is

at
io

ns
’ p

ri
nc

ip
le

s

Pr
in

ci
pl

e
EU

1,
2

Au
st

ra
lia

3
Ca

na
da

4
Si

ng
ap

or
e5

UK
6

US
7

PA
HO

8
W

HO
9

O
EC

D1
0

Va
lid

ity
 &

 
R

ob
us

t-
ne

ss

Te
ch

ni
ca

l 
ro

bu
st

ne
ss

 
re

qu
ire

s 
th

at
 

AI
 s

ys
te

m
s 

ar
e 

de
ve

lo
pe

d 
w

ith
 

a 
pr

ev
en

ta
tiv

e 
ap

pr
oa

ch
 to

 
ris

ks
 a

nd
 th

at
 

th
ey

 b
eh

av
e 

re
lia

bl
y 

an
d 

as
 

in
te

nd
ed

 w
hi

le
 

m
in

im
is

in
g 

un
-

in
te

nt
io

na
l a

nd
 

un
ex

pe
ct

ed
 

ha
rm

 a
s 

w
el

l 
as

 p
re

ve
nt

-
in

g 
it 

w
he

re
 

po
ss

ib
le

. 
Th

is
 s

ho
ul

d 
al

so
 a

pp
ly

 
in

 th
e 

ev
en

t 
of

 p
ot

en
tia

l 
ch

an
ge

s 
in

 
th

ei
r 

op
er

at
in

g 
en

vi
ro

nm
en

t 
or

 th
e 

pr
es

-
en

ce
 o

f o
th

er
 

ag
en

ts
 (h

um
an

 
or

 a
rt

ifi
ci

al
) 

th
at

 m
ay

 in
te

r-
ac

t w
ith

 th
e 

AI
 s

ys
te

m
 in

 
an

 a
dv

er
sa

ria
l 

m
an

ne
r.

AI
 s

ys
te

m
s 

sh
ou

ld
 r

el
ia

bl
y 

op
er

at
e 

in
 a

c-
co

rd
an

ce
 w

ith
 

th
ei

r 
in

te
nd

ed
 

pu
rp

os
e.

Va
lid

ity
 m

ea
ns

 
a 

hi
gh

-im
pa

ct
 

AI
 s

ys
te

m
 

pe
rf

or
m

s 
co

ns
is

te
nt

ly
 

w
ith

 in
te

nd
ed

 
ob

je
ct

iv
es

.
Ro

bu
st

-
ne

ss
 m

ea
ns

 
a 

hi
gh

-im
pa

ct
 

AI
 s

ys
te

m
 is

 
st

ab
le

 a
nd

 
re

si
lie

nt
 in

 a
 

va
rie

ty
 o

f c
ir-

cu
m

st
an

ce
s.

C
on

si
de

r 
ho

w
 

th
e 

as
so

ci
at

ed
 

ac
to

rs
 o

n 
th

e 
AI

 s
up

pl
y 

ch
ai

n 
ca

n 
re

gu
la

rly
 

te
st

 o
r 

ca
rr

y 
ou

t d
ue

 d
ili

-
ge

nc
e 

on
 th

e 
fu

nc
tio

ni
ng

, 
re

si
lie

nc
e 

an
d 

se
cu

rit
y 

of
 a

 
sy

st
em

.
Pr

ov
id

e 
to

ol
s 

an
d 

gu
id

an
ce

 
fo

r 
un

de
rt

ak
-

in
g 

AI
-re

la
te

d 
sa

fe
ty

 r
is

k 
as

se
ss

-
m

en
ts

 a
nd

 
im

pl
em

en
tin

g 
ap

pr
op

ria
te

 
m

iti
ga

tio
ns

.

AI
 in

te
rv

en
-

tio
ns

 s
ho

ul
d 

fo
llo

w
 s

ci
en

tif
-

ic
 b

es
t p

ra
c-

tic
e 

in
cl

ud
in

g 
be

in
g 

re
lia

bl
e,

 
re

pr
od

uc
ib

le
, 

fa
ir,

 h
on

es
t, 

an
d 

ac
co

un
t-

ab
le

.

Al
l a

lg
or

ith
m

s 
sh

ou
ld

 b
e 

te
st

-
ed

 r
ig

or
ou

sl
y 

in
 th

e 
se

tt
in

gs
 

in
 w

hi
ch

 th
e 

te
ch

no
lo

gy
 

w
ill

 b
e 

us
ed

 
in

 o
rd

er
 to

 
en

su
re

 th
at

 it
 

m
ee

ts
 s

ta
nd

-
ar

ds
 o

f s
af

et
y 

an
d 

ef
fic

ac
y.

 
Th

e 
ex

am
in

a-
tio

n 
an

d 
va

li-
da

tio
n 

sh
ou

ld
 

in
cl

ud
e 

th
e 

as
su

m
pt

io
ns

, 
op

er
at

io
na

l 
pr

ot
oc

ol
s,

 
da

ta
 p

ro
pe

rt
ie

s 
an

d 
ou

tp
ut

 d
e-

ci
si

on
s 

of
 th

e 
AI

 te
ch

no
lo

gy
.

Th
er

e 
sh

ou
ld

 
be

 r
ob

us
t, 

in
de

pe
nd

en
t 

ov
er

si
gh

t o
f 

su
ch

 te
st

s 
an

d 
ev

al
ua

tio
n 

to
 

en
su

re
 th

at
 

th
ey

 a
re

 c
on

-
du

ct
ed

 s
af

el
y 

an
d 

ef
fe

ct
iv

el
y.

AI
 s

ys
te

m
s 

m
us

t f
un

ct
io

n 
in

 a
 r

ob
us

t, 
se

cu
re

 a
nd

 
sa

fe
 w

ay
 

th
ro

ug
ho

ut
 

th
ei

r 
lif

et
im

es
, 

an
d 

po
te

nt
ia

l 
ris

ks
 s

ho
ul

d 
be

 c
on

tin
ua

lly
 

as
se

ss
ed

 a
nd

 
m

an
ag

ed
.
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Ex
am

pl
es

 o
f r

eg
io

na
l -

 a
nd

 c
ou

nt
ry

 g
ov

er
nm

en
t i

ns
tit

ut
io

ns
’, 

an
d 

in
te

rn
at

io
na

l o
rg

an
is

at
io

ns
’ p

ri
nc

ip
le

s

Pr
in

ci
pl

e
EU

1,
2

Au
st

ra
lia

3
Ca

na
da

4
Si

ng
ap

or
e5

UK
6

US
7

PA
HO

8
W

HO
9

O
EC

D1
0

D
at

a 
P

ri
va

cy
Pr

in
ci

pl
e 

of
 

pr
ev

en
tio

n 
of

 h
ar

m
 is

 
pr

iv
ac

y,
 a

 fu
n-

da
m

en
ta

l r
ig

ht
 

pa
rt

ic
ul

ar
ly

 
af

fe
ct

ed
 b

y 
AI

 s
ys

te
m

s.
 

Pr
ev

en
tio

n 
of

 h
ar

m
 to

 
pr

iv
ac

y 
al

so
 

ne
ce

ss
ita

te
s 

ad
eq

ua
te

 d
at

a 
go

ve
rn

an
ce

 
th

at
 c

ov
er

s 
th

e 
qu

al
ity

 a
nd

 
in

te
gr

ity
 o

f 
th

e 
da

ta
 u

se
d,

 
its

 r
el

ev
an

ce
 

in
 li

gh
t o

f t
he

 
do

m
ai

n 
in

 
w

hi
ch

 th
e 

AI
 

sy
st

em
s 

w
ill

 
be

 d
ep

lo
ye

d,
 

its
 a

cc
es

s 
pr

o-
to

co
ls

 a
nd

 th
e 

ca
pa

bi
lit

y 
to

 
pr

oc
es

s 
da

ta
 

in
 a

 m
an

ne
r 

th
at

 p
ro

te
ct

s 
pr

iv
ac

y.

AI
 s

ys
te

m
s 

sh
ou

ld
 r

es
pe

ct
 

an
d 

up
ho

ld
 

pr
iv

ac
y 

rig
ht

s 
an

d 
da

ta
 

pr
ot

ec
tio

n,
 

an
d 

en
su

re
 

th
e 

se
cu

rit
y 

of
 

da
ta

.

En
co

ur
ag

e 
AI

 
de

ve
lo

pe
rs

 
an

d 
de

pl
oy

er
s 

(w
ith

in
 th

ei
r 

re
m

it)
 to

 m
iti

-
ga

te
 a

nd
 b

ui
ld

 
re

si
lie

nc
e 

to
 

cy
be

rs
ec

ur
ity

 
re

la
te

d 
ris

ks
 

th
ro

ug
ho

ut
 th

e 
AI

 li
fe

cy
cl

e.
En

co
ur

ag
e 

AI
 

de
ve

lo
pe

rs
 

an
d 

de
pl

oy
er

s 
to

 c
on

si
de

r 
an

d 
m

iti
ga

te
 

w
he

re
 p

os
si

-
bl

e 
po

te
nt

ia
l 

m
al

ic
io

us
 o

r 
cr

im
in

al
 u

se
 

of
 A

I p
ro

du
ct

s 
an

d 
se

rv
ic

es
.

“D
at

a 
pr

iv
ac

y…
pr

ot
ec

tio
ns

 
ar

e 
in

cl
ud

ed
 

by
 d

ef
au

lt,
 

in
cl

ud
in

g 
en

su
rin

g 
th

at
 

da
ta

 c
ol

le
c-

tio
n 

co
nf

or
m

s 
to

 r
ea

so
na

bl
e 

ex
pe

ct
at

io
ns

 
an

d 
th

at
 o

nl
y 

da
ta

 s
tr

ic
tly

 
ne

ce
ss

ar
y 

fo
r 

th
e 

sp
ec

ifi
c 

co
nt

ex
t i

s 
co

lle
ct

ed
”.

Pr
iv

ac
y,

 
co

nfi
de

nt
ia

lit
y,

 
an

d 
se

cu
rit

y 
of

 d
at

a 
us

e 
m

us
t b

e 
fo

un
da

tio
na

l 
to

 e
ve

ry
 A

I 
de

ve
lo

pm
en

t.

D
at

a 
pr

ot
ec

-
tio

n 
la

w
s 

ar
e 

“r
ig

ht
s-

ba
se

d 
ap

pr
oa

ch
es

” 
th

at
 p

ro
vi

de
 

st
an

da
rd

s 
fo

r 
re

gu
la

tin
g 

da
ta

 
pr

oc
es

si
ng

 
th

at
 b

ot
h 

pr
o-

te
ct

 th
e 

rig
ht

s 
of

 in
di

vi
du

al
s 

an
d 

es
ta

bl
is

h 
ob

lig
at

io
ns

 
fo

r 
da

ta
 

co
nt

ro
lle

rs
 a

nd
 

pr
oc

es
so

rs
.
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Ex
am

pl
es

 o
f r

eg
io

na
l -

 a
nd

 c
ou

nt
ry

 g
ov

er
nm

en
t i

ns
tit

ut
io

ns
’, 

an
d 

in
te

rn
at

io
na

l o
rg

an
is

at
io

ns
’ p

ri
nc

ip
le

s

Pr
in

ci
pl

e
EU

1,
2

Au
st

ra
lia

3
Ca

na
da

4
Si

ng
ap

or
e5

UK
6

US
7

PA
HO

8
W

HO
9

O
EC

D1
0

Tr
an

sp
ar

-
en

cy
…

tr
an

sp
ar

-
en

cy
 w

hi
ch

 
en

co
m

pa
ss

-
es

 th
re

e 
el

em
en

ts
: 1

) 
tr

ac
ea

bi
lit

y,
 2

) 
ex

pl
ai

na
bi

lit
y 

an
d 

3)
 o

pe
n 

co
m

m
un

ic
a-

tio
n 

ab
ou

t t
he

 
lim

ita
tio

ns
 o

f 
th

e 
AI

 s
ys

te
m

.

Th
er

e 
sh

ou
ld

 
be

 tr
an

sp
ar

-
en

cy
 a

nd
 

re
sp

on
si

bl
e 

di
sc

lo
su

re
 s

o 
pe

op
le

 c
an

 u
n-

de
rs

ta
nd

 w
he

n 
th

ey
 a

re
 b

ei
ng

 
si

gn
ifi

ca
nt

ly
 

im
pa

ct
ed

 b
y 

AI
, a

nd
 c

an
 

fin
d 

ou
t w

he
n 

an
 A

I s
ys

te
m

 
is

 e
ng

ag
in

g 
w

ith
 th

em
.

Tr
an

sp
ar

en
-

cy
 m

ea
ns

 
pr

ov
id

in
g 

th
e 

pu
bl

ic
 w

ith
 

ap
pr

op
ria

te
 

in
fo

rm
at

io
n 

ab
ou

t h
ow

 
hi

gh
-im

pa
ct

 A
I 

sy
st

em
s 

ar
e 

be
in

g 
us

ed
.

Th
e 

in
fo

rm
a-

tio
n 

pr
ov

id
ed

 
sh

ou
ld

 b
e 

su
ffi

ci
en

t 
to

 a
llo

w
 th

e 
pu

bl
ic

 to
 u

n-
de

rs
ta

nd
 th

e 
ca

pa
bi

lit
ie

s,
 

lim
ita

tio
ns

, 
an

d 
po

te
nt

ia
l 

im
pa

ct
s 

of
 th

e 
sy

st
em

s.

En
d-

us
er

s 
of

 
AI

 M
ed

ic
al

 
D

ev
ic

es
 (A

I-M
D

) 
(e

.g
. m

ed
ic

al
 

pr
ac

tit
io

ne
rs

, 
pa

tie
nt

s)
 s

ho
ul

d 
be

 in
fo

rm
ed

 
th

at
 th

ey
 a

re
 

in
te

ra
ct

in
g 

w
ith

 
an

 A
I-M

D
.

En
co

ur
ag

e 
AI

 
de

ve
lo

pe
rs

 
an

d 
de

pl
oy

er
s 

(w
ith

in
 th

ei
r 

re
m

it)
 to

 
im

pl
em

en
t 

ap
pr

op
ria

te
 

tr
an

sp
ar

-
en

cy
 a

nd
 

ex
pl

ai
na

bi
lit

y 
m

ea
su

re
s.

Tr
an

sp
ar

en
t 

ap
pr

oa
ch

es
 

m
us

t a
lw

ay
s 

be
 u

se
d 

an
d 

co
m

m
un

i-
ca

te
d 

w
he

n 
de

ve
lo

pi
ng

 A
I 

al
go

rit
hm

s.
Ev

er
yt

hi
ng

 
m

us
t b

e 
as

 
op

en
 a

nd
 

sh
ar

ab
le

 a
s 

po
ss

ib
le

. 
To

ol
s 

an
d 

un
de

rly
in

g 
co

nc
ep

t o
f 

O
pe

nn
es

s 
m

us
t b

e 
a 

fe
at

ur
e 

an
d 

a 
cr

iti
ca

l 
su

cc
es

s 
fa

c-
to

r 
of

 a
ny

 A
I 

de
ve

lo
pm

en
t.

AI
 s

ho
ul

d 
be

 
in

te
lli

gi
bl

e 
or

 
un

de
rs

ta
nd

ab
le

 
to

 d
ev

el
op

er
s,

 
us

er
s 

an
d 

re
gu

la
to

rs
. 

Tw
o 

br
oa

d 
ap

pr
oa

ch
es

 
to

 e
ns

ur
in

g 
in

te
lli

gi
bi

lit
y 

ar
e 

im
pr

ov
in

g 
th

e 
tr

an
s-

pa
re

nc
y 

an
d 

ex
pl

ai
na

bi
lit

y 
of

 
AI

 te
ch

no
lo

gy
.

Th
is

 p
rin

ci
pl

e 
is

 a
bo

ut
 tr

an
s-

pa
re

nc
y 

an
d 

re
sp

on
si

bl
e 

di
sc

lo
su

re
 

ar
ou

nd
 A

I 
sy

st
em

s 
to

 e
ns

ur
e 

th
at

 p
eo

pl
e 

un
de

rs
ta

nd
 

w
he

n 
th

ey
 

ar
e 

en
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 p
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 o
f t

he
 

AI
 s

ys
te

m
 li

fe
-

cy
cl

e 
sh

ou
ld
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 o
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 b
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t p
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at
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 p
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 d
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 b
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de

si
gn

 o
f a

l-
go
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 c
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e 
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r 
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th
e 
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in
g 
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e 
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D
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 d
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 d
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 d
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 p
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 c
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 ti

m
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m
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d 
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k 
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l o
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 c
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y 
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a 
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e 
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s 
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e 
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-
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s 
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n 
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il 
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e 
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 o
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 b
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 c
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 p
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t b
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 p
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 re
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 b
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 c
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 d
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y 
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l 
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in
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-
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 p
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lig
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s 
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e 
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te
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l f
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y 
AI
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 c
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e 
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gr
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y 
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r 
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di
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d 
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.
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l-b
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 b
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f 
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 c
on

si
st

en
t 

w
ith

 s
oc
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at
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tir
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at
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 b
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 b
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 b
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re
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t 
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m
m
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s 

an
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n 
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pa
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st
em

s 
w
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an
 a

w
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e-
ne
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 o

f t
he
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te
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ia
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at
or

y 
ou
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om
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op
ria
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ac
tio
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t 
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 ta
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 m
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te
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rim
in

at
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y 
ou
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om

es
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di
vi

du
al
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an
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gr
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Th
e 
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ve

l-
op

m
en

t a
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pl
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en
ta

tio
n 

of
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D
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ho
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d 
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n 
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rim
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or

y 
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 u
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t c
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i-

ca
l i

m
pa

ct
 o
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di
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re

nt
 d
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gr
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c 

lin
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e 
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d 
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 s

ys
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m
s 
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un
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at
e 
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y 
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r 
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’s

 u
se
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ou
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e 
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n 
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ev
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t 

la
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.
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Appendix 3.  
USE CASES

The use cases presented in this appendix serve as practical illustrations for applying AI 
within PV. These cases provide insight into the potential applications of AI across various 
subdomains and highlight the methodologies, limitations, and associated performance with 
the integration of AI methodologies. Each use case exemplifies specific AI solutions across the 
current PV lifecycle offering readers a practical example of how AI can transform workflows, 
enhance efficiency, and ultimately contribute to improved patient safety.

Utilising these use cases appropriately requires an understanding of the principles that have 
been described in this guidance, and how some of these have guided the development and 
implementation of the use cases. It is important to note that the use cases pre-date this 
guidance and therefore not all principles may have been considered.

Readers are encouraged to analyse the context, objectives, and outcomes of each case study 
to derive meaningful insights for their organisational needs. By systematically evaluating the 
alignment of each AI solution with the governance framework outlined in the main report, 
stakeholders can identify best practices and potential pitfalls in AI integration, fostering a 
responsible approach to adopting AI technologies in PV.

Moreover, the use cases highlight the importance of adhering to the key guiding principles. 
Through consideration of these examples, organisations can gain valuable perspectives that 
drive innovation while safeguarding the integrity of their PV systems.
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Use Case A: Large Language Models data extraction 
for case processing
Source:1
Area of PV: ICSR Processing

A1. Business rational and challenges

The GVP refer to the set of guidelines and standards established by EMA to ensure the 
safety and efficacy of pharmaceutical products throughout their lifecycle. These practices 
are essential for the systematic monitoring, assessment, and management of adverse drug 
reactions. Pharmaceutical companies must act on reports of potential adverse reactions to 
drugs to protect public health by ensuring that potential risks are identified and addressed 
promptly. With significant increases in the number of case reports in recent years, case intake/
processing operations face complex challenges beyond the number of cases, such as 
handling very diverse data sources including unstructured texts and scanned documents or 
managing sudden peak inflows with a finite workforce. With the complexity of the relevant data 
points ranging from simple demographics to more complex lab values, simpler technology 
approaches like Named Entity Recognition, that identify and categorise key information 
using pre-defined annotations from unstructured sources, such as name(s) of reported AE, 
reporter qualification, countries, and specific terms, to analyse and extract relevant data, 
were unsuccessful in consistently improving case intake/processing operations under 
real-world circumstances. The use of LLMs in case intake/processing provides potential to 
advance processes without compromising quality. However, LLM-based tools should undergo 
periodic re-evaluation to monitor model drift effectively. Additionally, training and calibration 
processes must ensure that all identifiable data handling complies with GDPR and HIPAA 
regulations to safeguard data privacy and maintain compliance.

A2. Solution

A pharmaceutical company executed a proof-of-concept (PoC) study to assess the feasibility 
as well as the quantitative and qualitative business impact of utilising LLMs for case intake 
purposes. Specifically, LLMs were applied for data extraction from source documents for 
case intake and processing while covering regulatory and compliance aspects.

To process the selected source documents and extract pre-defined pieces of information, 
a three-step semi-automatic processing pipeline was set up. The pipeline consisted of (1) 
pre-processing steps to unify the input for the LLM (OpenAI´s GPT-4), (2) a JSONi-formatted 
extraction template that guided the LLM in structuring the information as well as providing 
hints regarding the location of the information in the source data, and (3) post-processing 
steps to match the model output with fields where predefined values were applicable. 
Redacted copies of source documents were augmented by references and highlighting of 
extracted key terms.

For the assessment of the business impact of using LLMs for case intake, a selection of 
representative cases was identified. A graphical user interface (GUI) was designed for the 
purpose of comparing the processing performance of (a) the fully manual process vs (b) the 
manual process augmented by fields pre-filled by the results of the LLM extraction pipeline. 

i	  JSON = JavaScript Object Notation
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Four experienced professionals were randomly assigned to either process version (a) or 
(b). The processing times were tracked for each source document to derive the overall 
processing time regarding extraction of the representative set of fields.

A3. Results

In this study, two key results were derived from the implementation of LLMs in the case 
intake and processing operations:

The first result focused on the performance of the LLM model, measured through the match 
scores of all extracted fields and averaged across cases of a category for the full number 
of source documents in scope of this study. The statistical evaluation revealed that the 
model achieved match scores, ranging from 85% to 100% for clinical studies, and 60% to 
100% for patient support programs (PSP) cases. For literature cases, while the sample size 
precludes a robust statistical evaluation, model performance ranges from 67% to 100%, 
suggesting qualitative results that align with the other types.

The high match scores achieved by the model demonstrate its capability to extract accurate 
and relevant information from unstructured sources. This can be translated into tangible 
efficiency gains for business operations.

The second result highlighted the efficiency gains identified in the business impact assessment. 
The implementation of LLM in case intake led to an estimated efficiency gain of 39%, 
translating to time savings of approximately 20 minutes per case. Specifically, the study 
found that the average number of data points extracted per case was 69.4, with only 2.4 
data points requiring manual correction.

Implementing LLMs is not just a technical enhancement; it represents a strategic move 
towards improving operational efficiency and ensuring high-quality outcomes in PV practices.

A4. Challenges and Lessons Learned

The learnings of this PoC converged into five key Points to Consider (PtC), which can be 
used as a springboard to support future research. Taking a practical industry perspective 
as well as relating the observations to scientific work in the field, the authors reflect on 
enabling innovative technologies and the experience shared, while preliminary, should aid 
others working in this space.

1.	 The Return of Investment (RoI) needs to be measurable in a business context:

The RoI for implementing LLMs must be quantifiable, as they can yield significant 
efficiency gains (in this PoC up to 39%), translating into financial benefits and increased 
team productivity.

2.	 Early involvement of SMEs increases RoI:

Engaging SMEs early is essential for optimising model performance, enhancing process 
understanding, and enables effective prompt engineering, ultimately leading to improved 
reliability and resource efficiency while addressing limitations of LLMs to increase RoI.

3.	 Regulatory uncertainty remains a significant hurdle:

Regulatory uncertainty poses a significant hurdle for compliance with GxP standards in 
AI technologies, as the evolving regulatory landscape from major health authorities like 
the EMA and US FDA creates challenges that necessitate proactive risk management 
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and practical, solution-oriented approaches to ensure validation and accuracy in real-
world applications.

4.	 System integration needs to be contextualised in the operational environment:

System integration of LLMs must be contextualised within the operational environment, 
taking into account existing system limitations and user requirements to derive meaningful 
study results, while emphasising the importance of a prompting strategy and dedicated 
pre-processing and post-processing for effective embedding in established safety solutions.

5.	 Organisational readiness goes beyond technology:

Organisational readiness for adopting new technology extends beyond mere technological 
capabilities, requiring human involvement, sufficient trust, and robust oversight, which 
can be fostered through early engagement with operational teams, mindset shifts, 
awareness, training, and process readiness to mitigate potential inhibiting factors and 
facilitate effective study conduct.

To effectively implement these key Points to Consider, a risk-based approach can serve 
as a strategic framework that aligns assessment of potential impact of inaccuracies on 
patient safety, development of effective mitigation strategies for false positives and ensure 
compliance; continuous monitoring and evaluation of the LLM’s performance and optimisation 
of the integration of this technology into existing system.

A4. Compliance with the governance framework

Table 11:	 Use case A: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle Activities SPEC DEV PreD PstD RU

Risk-based 
approach

To categorise risks associated with the 
implementation of Large Language Models 
for data extraction in case processing, it is 
essential to assess the potential impact 
of inaccuracies on patient safety and 
pharmacovigilance outcomes. Additionally, 
stakeholders should be engaged to 
develop effective mitigation strategies 
for false positives and ensure compliance 
with regulatory requirements, including 
GDPR and HIPAA. Continuous monitoring 
and evaluation of the LLM’s performance, 
alongside robust training for users, will be 
critical to managing risks and optimising 
the integration of this technology into 
existing pharmacovigilance systems.

A A N/A N/A N/A

Human 
oversight

Implementation of dedicated features to 
support human oversight, including user-
friendly interfaces and references to the 
source data. The 100% human QC ensures 
robustness of all extraction outputs.

A A N/A N/A N/A
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Principle Activities SPEC DEV PreD PstD RU

Validity & 
robustness

No continuous learning is applied; rather, 
the model is used in a locked state. 
Releases of new versions are quality 
assured on a sufficiently broad test set to 
derive.

A A N/A N/A N/A

Transparency Model performance has been measured 
with match score. The correction of the 
failures can be used as feedback in regular 
intervals to improve the prompting strategy.

A A N/A N/A N/A

Data Privacy The service is established on a private 
cloud. Access is provided only to project 
team members. Personally identifiable 
information is redacted prior to the actual 
data extraction step.

A A N/A N/A N/A

Fairness & 
Equity

Not applicable. The application is not 
providing any data consolidation or decision 
support. The 1:1 match of the data 
extraction is verified by the human QC.

N/A N/A N/A N/A N/A

Governance 
& 
Accountability

The LLM model is using tailored prompting 
strategy maintained on vendor domain 
to test the data extraction. The model is 
provided by Open AI, and is powered by a 
selection of Large Language Models.

The case intake and processing team takes 
over the accountability and performs the 
100% human QC process. The ultimate 
accountability remains with the MAH.

A A N/A N/A N/A

Abbreviations
SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use
A: Applicable
NA: Not Applicable
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Use Case B: Case deduplication
Source:2
Area of PV: ICSR Processing

B1. Business rational and challenges

Adverse event reporting systems (AERS) are essential in PV as they support the identification 
and evaluation of safety signals related to the use of medical products. Expert review in safety 
monitoring involves several steps, such as data mining and case series analysis, which are 
significantly affected by the AERS data quality. A representative example of quality issues 
is duplication, where more than one report describes the same patient case and the same 
AE experience for the same product. Duplicate reports may result in false or missed safety 
signals and increase the workload for safety evaluators by misinterpreting the actual number 
of true AEs and making a product-event relationship look weaker or stronger.

B2. Solution

A regulatory agency that maintains an AERS for drugs and biologics with >28 million historical 
reports and an average of 8,000 new submissions daily sought an efficient solution to 
deduplicate all historical and incoming AE reports. The regulatory agency collaborated with 
an academic partner to address this issue by developing a deduplication pipeline relying 
on modern technologies (mainly, NLP, network analysis, and cloud computing) and utilising 
structured data and free-text narratives. The pipeline executes an initial pass to filter down the 
pairs of reports by placing minimum requirements on similarity based on demographic data 
and other features. Subsequently, a pairwise streamlined worker implementing a duplicate 
detection algorithm performs a probabilistic comparison of all qualifying report pairs and 
calculates two scores, a probabilistic weight score and a second component score value, 
that together rate how similar the two reports are. In the third step, the pairs exceeding a 
preselected validated threshold that was specified in a dedicated analysis are merged into 
networks (a.k.a. groups) of potentially duplicate reports and split into tightly linked communities 
(a.k.a groups) of actual duplicates. Finally, a reference case selection component identifies 
the most representative report in each duplicate group based on several parameters and 
the remaining reports in the group are flagged as duplicates and they are excluded from 
subsequent data mining calculations. An existing decision-support tool developed to support 
the case series analysis allows for evaluating the groups of duplicate reports and verifying 
the reference case, keeping medical reviewers in-the-loop.

B3. Results

In an early research study, the duplicate detection algorithm was applied to two datasets 
of post-market reports, one including vaccine product reports and one containing reports 
for biologics, identifying 77% and 13% of known duplicate pairs, respectively, with (nearly) 
perfect precision in both cases (95% and 100%, respectively).3 This algorithm was refined in 
subsequent steps to reach acceptable levels of performance that, in some cases and based 
on new evaluations using drug AE reports, supported the detection of duplicate pairs with 
an F-measure >0.9. The medical reviewers who participated in this new evaluation round 
felt confident about the algorithm and expressed their interest in using it, as discussed 
in the corresponding publication.4 Subsequently, the medical reviewers generated a gold 
standard of 2300 reports with labelled duplicates in a systematic process to support 
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the validation of the recently built deduplication pipeline, which was then compared with 
existing deduplication approaches used at the regulatory agency. The deduplication pipeline 
outperformed these approaches and was approved for processing all historical reports and 
incoming live data in an ETL process (extract, transform, and load process). As of July 30, 
2025, the pipeline, installed on the AWS environment and tightly integrated with the agency’s 
AERS, has screened >30 million historical reports and continues deduplicating an average 
of 8,000 new submissions daily.

B4. Challenges and lessons learned

The deduplication pipeline was developed through a multi-year investigation, which involved 
investing various human and other resources to achieve the desired performance and 
facilitate the migration of this solution into the production environment. Still, a validated and 
transparent AI-based solution that outperforms existing ones and is freely available to the 
regulatory agency along with its underlying code, opens several opportunities to leverage 
the deduplication output and integrate the pipeline into existing systems. This maximises 
the benefits and eliminates the considerable costs associated with proprietary tools.

As this deduplication actively processes large AERS data daily and the output cannot be 
reviewed and confirmed by humans, it is essential to develop a strategy to ensure that the 
performance demonstrated in all evaluation rounds remains consistently high. A solid QA 
plan is not yet in place and presents a significant challenge to building more trust within 
the user community. On the other hand, the decision-support tool mentioned above and 
described in Figure 8 enables review of groups of duplicate reports and confirmation of 
the case that best represents the reported AE, namely the reference case. Although this 
process occurs in a case series analysis setting and cannot be done for all data, it may 
support a QA plan through this more limited evaluation of smaller data sets. This approach 
will indicate whether performance remains at the same level and if any correction strategies 
are necessary. The regulatory agency carefully reviews these aspects and plans to conduct 
periodic audits through this or other mechanisms as part of a QA strategy.
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B5. Compliance with the governance framework

Table 12:	 Use case B: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle Activities SPEC DEV PreD PstD RU

Risk-based 
approach

A risk-based approach has been discussed 
extensively, especially regarding missed 
or false positive duplicate reports. It has 
been determined that implementing the 
pipeline in the decision-support system, 
with humans-in-command, eliminates 
any risks for the case series analyses. 
What remains to be done is acknowledging 
any risks for data mining calculations and 
potential noise in signal detection; this part 
has not yet been fully developed and mostly 
affects the routine use of deduplication for 
data mining calculations and not its use in 
case series analyses that is currently fully 
implemented.

A A A A A

Human 
oversight

Human experts actively provided feedback 
to the software engineers during the 
development stage and evaluated the 
deduplication output to refine and validate 
the pipeline. Human experts can confirm or 
modify the reference case selection using 
an existing decision-support tool while 
conducting their case series analyses in the 
routine use setting. Periodic audits during 
the routine operation of this deduplication 
pipeline are essential to ensure the 
performance shown in the pre-deployment 
phase remains consistently high.

A A A A A

Validity & 
Robustness

The deduplication pipeline has been 
evaluated and validated to ensure it meets 
expectations and serves its intended 
purpose. The effect of deduplicated data on 
data mining calculations and the discovery 
of potential safety signals, which is one 
of the major uses of deduplication output, 
has not yet been investigated.

A A A A A

Transparency Several publications, technical reports, 
and other documentation describe the 
pipeline and results of all evaluations 
conducted with safety reviewers’ 
assistance.

A A A A A
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Principle Activities SPEC DEV PreD PstD RU

Data Privacy Fully complying with the principle as all 
processing occurs in a secure cloud 
environment.

A A A A A

Fairness & 
Equity

The deduplication pipeline has been 
evaluated and validated in several rounds 
and is closely monitored in the post-
deployment phase. The pipeline is fully 
migrated to the production environment to 
be routinely used at the time of writing this 
report; it is therefore marked as partially 
aligned since this process has not been 
completed yet.

A A A A A

Governance 
& 
Accountability

System administrators have full control 
and continuously monitor the deduplication 
pipeline as well as the use of its output 
in the decision-support tool. A plan has 
also been developed to incorporate the 
deduplication output in the data mining 
calculations. Clearly defined roles were 
specified in the development, pre-
deployment, and post-deployment stages, 
where the Contractor led the pipeline’s 
construction and incorporation into the 
decision-support tool and the existing 
environment at the regulator’s site, assisted 
by the end users and other stakeholders. 
Roles have not yet been fully assigned in 
the routine use setting.

A A A A A

Abbreviations
SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use
A: Applicable
NA: Not Applicable
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Use Case C: Artificial intelligence 
translation assistant
Source:5
Area of PV: ICSR reporting

C1. Business rational and challenges

Processing of ICSRs starts with the collection of information from the worldwide markets 
and the intake into the electronic database system/workflow. Typically, this involves many 
languages which require translation into English for the further processing steps by the 
global functions. Translation plays a crucial role as errors in the translation can lead to 
misunderstandings and wrong conclusions downstream. Furthermore, manual translation 
requires time and effort and coverage of all markets/languages by well-trained translators 
can be a challenge.

In the current example the pharmaceutical company had engaged with a vendor to consolidate 
and streamline the global case intake and translation process. The vendor had established 
two hubs in Europe and Asia to cover 16 languages across 32 countries replacing a 
distributed network of multiple local country organisations and local vendors. To further 
increase productivity, the vendor had been requested to automate the translation process.

C2. Solution

While processing foreign language adverse event reports, about half of the effort was 
required for accurate translation of source documents from local languages to English, 
enabling centralised case management in English and subsequent submission to authorities. 
The pharmaceutical company and the vendor formed a common project team consisting 
of experts on ML and PV associates to pilot an AI-powered translation assistant based on 
commercially available technology. The team had set up a private cloud environment to store 
learning data (source texts and human-edited translations) and developed a user interface to 
input original text and retrieve and (if necessary) edit the result. The system automatically 
stores and analyses any modifications done by the users to enable further learning iteration 
and improvement of the first-time quality of the AI translation assistant. A 100% QC by a 
human translator of all the translations was established to always verify the accuracy of the 
translation. The solution facilitates continuous learning through the automated integration 
of the manual edits into the translation model in defined regular intervals. With each model 
update the relevant quality measures (BLEU scores, see below) are re-calculated. Until today, 
the 100% QC by the HITL has been kept.

C3. Results

The translation’s quality was assessed by BLEU scores. BLEU is a metric for evaluating 
machine-translated text. The BLEU score is a number between zero and one that measures 
the similarity of the machine-translated text compared to a set of high-quality reference 
translations. Within six months, the AI translation assistant mimicked the quality of a human 
translator (i.e. BLEU equal or greater than 0.6).6

The results of the AI Translation Assistant pilot for the first language (Portuguese) were 
leading to a reduction of translation efforts by approximately 30%. Hence the solution 
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was extended to five further languages (Chinese, Dutch, French, German, and Spanish). 
The pharmaceutical company and vendor teams are jointly and continuously evaluating the 
BLEU score to monitor the quality of the solution.

Improving the AI model is a function of case volume as every revised sample translation 
provided by the QC team helps to improve the model. More samples make better models, 
and better models finally reduce the effort for the team, allowing them to work through more 
cases faster and with greater consistency.

C4. Challenges & Lessons Learned

Since the launch of the AI Assistant for Translation in 2021, translation quality has further 
improved, with less than 10% of outputs needing human corrections. The team is considering 
shifting from full human quality checks to sample-based monitoring, adjusting sample sizes 
as needed by language.

With the rise of GenAI since 2022, these tools now offer multiple features, such as extracting 
structured data, translating information, preparing case summaries, and translating reports 
for non-English regions, all within a single platform. Currently, several projects are under 
way to implement GenAI into the (commercial) applications available for ICSR management. 
These platforms again have the potential to increase the efficiency in ICSR management 
drastically. For now, the HITL will play a crucial role to ensure high quality.

C4. Compliance with the governance framework

Table 13:	 Use case C: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle Activities SPEC DEV  
PreD

PstD  RU

Risk-based 
approach

Translation of incoming information bears 
the risk of mistakes, which may lead 
to wrong conclusions or assessments 
downstream. Therefore, a risk-based 
approach has been followed thoroughly and 
consequently measures have been taken to 
ensure full and continuous human oversight.

A A A A A

Human 
oversight

To ensure human oversight, a 100% human 
QC of the translated text by the vendor 
translators was established from the 
beginning. The BLEU scores are regularly 
measured for each language to identify 
changes in the overall performance.

A A A A A

Validity & 
robustness

The system has been implemented 
following the vendors standard validation 
approach. The 100% human QC ensures 
validation of all translation outputs. 
Any failure of the translation assistant would 
be immediately detected and corrected.

A A A A A
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Principle Activities SPEC DEV  
PreD

PstD  RU

Transparency Transparency of the translation 
performance is obtained as all translations 
are tracked by the system as well as any 
edits by the human translator. These edits 
are used at regular intervals to improve the 
model.

A A A A A

Data Privacy The service is established on a private 
cloud. Access is provided only to project 
team members. Personally identifiable 
information is redacted prior to the actual 
translation process. The original source 
document remains available only for 
the local team who received the initial 
information and who may have to follow-up 
with the initial reporter.

A A A A A

Fairness and 
Equity

The application is not providing any 
interpretation of data, consolidation, 
or decision support. In the event that 
certain words or expressions (e.g. popular 
language) are not known to the AI assistant, 
the human translator steps in during the 
QC. The 1:1 match of the translation is 
always verified by the human QC.

 A A A A A

Governance 
& 
Accountability

The translation assistant is a standalone 
tool owned by the vendor company. 
Hence, the regular lifecycle governance is 
executed by the vendor and available on 
request to the pharmaceutical company. 
It concerns, e.g. the update of the model 
based on learning progress.

While the responsibility for the execution 
of the translation lies with the vendor, 
the ultimate accountability remains with 
the pharmaceutical company. Hence, 
in addition to the 100% human QC process 
by the vendor, the pharmaceutical company 
is doing a defined sample QC of the 
overall case intake results, including the 
translation.

A A A A A

Abbreviations
SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use
A: Applicable
NA: Not Applicable
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Use case D: Large Language Models for context-
aware Structured Query Language
Source Article:7
Area of PV: Safety analysis

D1. Business rational and challenges

Safety scientists are often reliant on technical teams for safety query formulation and 
extraction of data from safety databases using SQL, which can introduce delays in assessment. 
The aim therefore was to enhance the accuracy of information retrieval from PV databases 
by employing LLMs to convert natural language queries (NLQs) into SQL queries, leveraging 
a business context document.

D2. Solution

A sandboxed version of OpenAI’s GPT-4 model was utilised within a RAG framework, enriched 
with a business context document, to transform NLQs into executable SQL queries. The study 
was conducted in three phases, varying query complexity, and assessing the LLM’s performance 
both with and without the business context document.

The RAG framework facilitates the transformation of NLQs into SQL queries by harnessing 
its retrieval mechanism to access relevant information from the business context document. 
This enriched contextual data is then provided as input to the GPT-4 model, enabling it to 
generate SQL queries that are aligned with the specific schema and operational requirements.

D3. Results

Results showed significant improvements in query generation accuracy across three 
experimental phases. In Phase 1, using only the database schema, the LLM achieved a pass 
rate of 8.3% with 78.3% failing to generate valid SQL queries, highlighting the challenges of 
generating accurate SQL queries without contextual information. In Phase 2, the addition of 
a business context document increased the pass rate to 78.3%, and achieved a statistically 
significant improvement (P-value: 0.0006) compared to Phase 1. In Phase 3, which used a 
narrowed schema without the business context document, showed modest improvements 
reducing the failure rate from 78% to 50% compared to Phase 1, but did not match the 
performance achieved in Phase 2.

The method is an assistive method to enable non-technical users to perform complex data 
queries, potentially enhancing timeliness of PV data analysis and reporting.

D4. Challenges & Lessons Learned

The study highlighted challenges in automating SQL query generation for PV databases 
using LLMs. One limitation was the difficulty in handling high-complexity queries, as the LLM 
struggled to generate accurate SQL code when faced with intricate database relationships 
and ambiguous user intents. This challenge was particularly evident in Phase 1, where the 
absence of contextual knowledge resulted in a failure rate of 78.3%. While the introduction 
of a business context document in Phase 2 significantly improved performance, achieving 
a pass rate of 78.3%. Another consideration for implementation would be the need for 
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domain experts to construct and maintain the business context document, as updates to 
the database schema could impact its utility.

D5. Compliance with the governance framework

Table 14:	 Use case D: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV 

Principle Activities SPEC DEV PreD PstD RU

Risk-based 
approach

Within this study, the intent is to 
demonstrate use of natural language to 
generate SQL queries to retrieve data 
from a safety database. The risk-based 
approach should consider the feasibility of 
implementation, controls and processes 
needed to ensure its trusted use.

A A N/A N/A N/A

Human 
oversight

Within the PoC human experts reviewed 
the relevance of the outputs against a 
reference standard.

Within a product setting consideration 
would need to be given to how human 
oversight will ensure robustness of the 
outputs, including confirming if the correct 
data has been extracted. As the database 
schema may change, thought should also 
be given to monitoring performance over 
time and at defined intervals.

A A N/A N/A N/A

Validity & 
Robustness

The tool has been evaluated against a 
curated reference standard. Beyond the 
PoC, consideration would need to be 
given to generalisability in production use 
including ensuring outputs are correct 
based on the user’s requirement.

A A N/A N/A N/A

Transparency Whilst there is transparency of the GPT 
model, the use of RAG and context specific 
documentation provides transparency of 
the pipeline and how data is processed to 
achieve the output.

A A N/A N/A N/A

Data Privacy This is an assistive tool not using individual 
patient data to generate SQL outputs.

N/A N/A N/A N/A N/A

Fairness & 
Equity

This is an assistive tool that does not use 
individual patient data to generate SQL 
outputs.

N/A N/A N/A N/A N/A
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Principle Activities SPEC DEV PreD PstD RU

Governance 
& 
Accountability

During the PoC, the accountability of the 
methodology remains with the developer. 
However, if the methodology is integrated 
into a production setting, accountability 
would transition to the human subject 
matter expert.

Governance within a PoC ensures scientific 
integrity principles are adhered to, while 
future product use governance should 
cover how the tool fits into the overall PV 
system and QMS.

A A N/A N/A N/A

Abbreviations
SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use
A: Applicable
NA: Not Applicable
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Use Case E: Causality assessment of adverse drug 
reactions
Source:8
Area of PV: Causality Assessment

E1. Business rational and challenges

Assessing the causal relationship between an adverse event and the patient’s exposure to a 
drug is a critical part of the PV process, determining the expedited reporting requirements 
for each ICSR. Causality assessment is a time-consuming process requiring manual review 
by medical experts who evaluate data in the case with data from external sources (e.g. 
drug labels, scientific publications, drug mechanism of action, and disease symptoms). As the 
volume of adverse events to be reviewed increases an opportunity exists to create solutions 
that leverage ML to support the medical experts by predicting causality assessments.

E2. Solution

The authors of this paper created a modelling feature set comprising of various data 
attributes from solicited cases from the pharmaceutical company’s safety database relevant 
to causality assessment of drug-event combinations. This was supplemented by engineered 
data features comprising external data and data from other internal sources. The resulting 
training data schema (shown below) was selected as it provides a comprehensive set of 
features relevant to the causality assessment process.

Table 15:	 Use case E: Modelling Data
Source: Modified from Cherkas Y, et al, 2022 9 Table reproduced with permission

Modelling Data

Case Level Data External Sourced Data

Causality Label Medical History Exclusions Disproportionality

Rechallenge Drug Exclusions Anatomical Therapeutic 
Class & System Organ Class

Labeledness Temporal Relationship

Reporter Causality Temporal Compatible

In parallel, a separate decision support tool (CASCADE) was developed and validated through 
consultation with experienced drug safety physicians. A decision tree structure was adopted 
due to its increased transparency and interpretability when compared to other causality 
assessment algorithms. This increased transparency and interpretability allow a clear statement 
of the rationale for the assessment to be written (e.g. “The case is deemed causally related 
as it is (a) Labelled for the event (b) The event has a plausible temporal relationship, etc.”).

The work on the decision tree provided a basis for the subsequent predictive model, informing 
contributing factors and the topology of the resulting Bayesian Network model. The authors’ 
rationale for selecting this type of model include: the ability to combine multiple sources 
of information with expert knowledge, transparency and interpretability, and their capability 
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to model complex frameworks with causal dependencies where a lot of uncertainty exists. 
Model training utilised an annotated dataset of 50k cases, with a separate test dataset of 
20k cases. Both the training and test dataset represented a broad range of drug classes 
and event categories. All cases had been previously assessed by medical experts and were 
taken from a period where the causality assessment practices were consistent.

E3. Results

The model demonstrated high performance (sensitivity was 0.900, with PPV of 0.778) in 
predicting the causality assessment of drug–event pairs compared with clinical judgment 
using global introspection. The authors also explored a learned topology Bayesian Network 
model with the same training data. The learned topology model was found to have inferior 
performance compared to their CASCADE-based model.

E4. Challenges and lessons learned

Data availability presents several challenges but also opportunities for improving the model 
through addition of new features and allowing further validation of model performance.

The lack of well-annotated causality data from additional sources limited the exploration of 
the model’s performance for drug-event combinations not included in the internal data set. 
Creation of a public reference set, while itself likely to be challenging, introduces opportunities 
to validate such models and compare their performance with other methodologies across 
a wider spectrum of drugs and events.

The study used a limited set of related clinical trial cases to establish an estimate of plausible 
time-to-onset between exposure to the drug and the event onset. More comprehensive 
datasets (e.g. EHRs) containing such data could provide potential for improving this feature 
of the model design. Use of drug mechanism of action data in the time to onset feature may 
also help improve model performance.

Access to drug label data would support the addition of features to identify whether events 
are labelled for any drugs in the case or drugs from the same class as the drug under review. 
Similarly, incorporation of data on medical conditions and drug indications might be used to 
identify confounders, including whether the reported reaction is a symptom of an existing 
medical condition or associated with a concomitant medication’s indication.

Variability in the causality assessments for drug-event pairs is well documented and presents 
a potential challenge in ensuring transparency when designing models to support this 
activity. The development of a validated decision-tree tool (CASCADE) provided a structured, 
consistent, and transparent approach that helped inform the topology of the resulting model 
and demonstrated the value of integrating expert clinical knowledge into ML models although 
interpretability of the model remains a challenge that needs to be addressed.
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E5. Compliance with the governance framework

Table 16:	 Use case E: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle Activities SPEC DEV PreD PstD RU

Risk-based 
Approach

The scope of the work and resulting model 
was limited to solicited, post-marketing 
cases. The Automating the causality of 
assessment of these cases was determined 
to have a lower risk/ impact to the PV 
system.

A A N/A N/A N/A

Human 
Oversight

Drug safety physicians and SMEs were 
involved in the data review and model 
development activities, ensuring the 
applicability of the model to its intended 
purpose. There is no discussion about 
the creation of a quality management 
framework to support human oversight for 
(future) production use.

A A N/A N/A N/A

Validity & 
Robustness

The use case and deployment domain are 
described in the paper. The data used in 
this study were limited to a specific period 
where causality assessment methods were 
consistently applied across a broad range 
of product and event categories to increase 
the reliability of the resulting model. Model 
training and testing activities are described 
in detail, as is the approach used for 
performance assessment. The authors 
consider areas for investigation that could 
be used to further demonstrate the model’s 
validity and improve robustness including 
the availability of a public reference set of 
drug-event causality assessments.

A A N/A N/A N/A

Transparency There is a focus on transparency 
throughout the paper. Information 
about intended use of the model and 
its design are provided. A decision tree 
tool (CASCADE) designed to provide 
clear rationale for the resulting causality 
assessment was created and informs the 
design of the resulting model. Data, results, 
areas for further investigation, and how the 
model could be applied in a PV system are 
discussed.

A A N/A N/A N/A
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Principle Activities SPEC DEV PreD PstD RU

Data Privacy The data used for the development, 
training, and validation of the model is 
from the company’s internal post-marketing 
safety database suggesting it was obtained 
with the patient’s/reporter’s consent and in 
compliance with relevant privacy laws and 
regulations.

A A N/A N/A N/A

Fairness & 
Equity

Based on the article, it is not possible to 
comment on whether model development 
aligns with this guiding principle.

N/A N/A N/A N/A N/A

Governance 
& 
Accountability

There is no discussion of governance 
and accountability activities, as defined in 
this guidance, in the paper. The authors 
acknowledge the need for models to remain 
compliant with regulatory frameworks 
and guidelines. Further, the CASCADE 
decision tree created is referenced as a 
causality assessment support tool implying 
accountability for the final causality 
assessment decision remains with the drug 
safety SME.

N/A N/A N/A N/A N/A

Abbreviations
SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use
A: Applicable
NA: Not Applicable
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Use Case F: Process efficiencies supporting signal 
detection
Source Article:10

Area of PV: Signal Detection

F1. Business rational and challenges

One of the most time- and resource-demanding procedures for dismissing safety signals is 
the identification of alternative causes for the reported adverse events (AEs) in ICSRs after 
signals of disproportionate reporting have been identified. This includes the screening of co-
reported drugs to identify alternative potential causes for the newly identified drug–event pair.

F2. Solution

This study aimed to develop an AI-based framework to automate (1) the selection of control 
groups in disproportionality analyses and (2) the identification of co-reported drugs serving 
as alternative causes, to look to dismiss false-positive disproportionality signals.

The implementation of automatic selection of controls and dismissal of false positive signals 
using a conditional inference tree is summarised in the flowchart below.

Figure 6:	 Flowchart summarising the implementation of the automatic 
selection of controls and the dismissal of false positive signals 
when using a conditional inference tree

Source: Al-Azzawi F et al, 2023 359 Reproduced under Creative Commons Attribution-Non Commercial 4.0 
International License. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

Automatized selection of controls 
for disproportionality analyses Disproportionality analyses

Conditional inference tree-guided 
identi�cation of alternative causes 
in ICSR (i.e., co-reported drugs)

Remove ICSR with alternative 
cases (i.e., co-reported drugs) to 

undergo case-by-case assessment

List of disproportionality signals to 
be processed for signal validation

Disproportionality analyses 
excluding cases with alternative 

causes

A dual approach combining the ATC classification system code and the approved therapeutic 
indication in the US Prescribing Information (USPI) of galcanezumab was used for automatising 
the selection of controls for disproportionality analysis when using FAERS. All active ingredients 
with the same therapeutic target (i.e. CGRP antagonists) as galcanezumab were identified 
using the 4th level of the ATC code, or rather the chemical subgroup. DrugBank was used 
to identify controls with the same approved therapeutic indication but with active ingredient 
outside the chemical subgroup of galcanezumab, aiming to avoid masking due to drug class 
effect and confounding by indication.
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Disproportionality signals were further analysed by using conditional inference trees to identify 
alternative cause co-reported drugs. The USPI of disproportionally co-reported drugs was 
screened to identify those drugs that listed in the USPI the AE in disproportionality signal 
mimicking procedures performed during signal validation. The disproportionality analysis 
was conducted again by removing cases with co-reported drugs for which the AE under 
investigation was listed in the USPI as these cases had alternative causes for the AE.

F3. Results

By using conditional inference trees, the framework was able to dismiss 20.00% of erenumab, 
14.29% of topiramate, and 13.33% of amitriptyline disproportionality signals on the basis of 
purely alternative causes identified in cases, from within the control group. Furthermore, of the 
disproportionality signals that could not be dismissed purely on the basis of the alternative 
causes identified, the authors estimated a 15.32%, 25.39%, and 26.41% reduction in the 
number of galcanezumab cases to undergo manual validation in comparison with erenumab, 
topiramate, and amitriptyline, respectively.

The authors concluded that AI could significantly ease some of the most time-consuming 
and labour-intensive steps of signal detection and validation. The AI-based approach showed 
promising results; however, future work is needed to validate the framework.

F4. Challenges & Lessons Learned

The study highlighted specific challenges in automating signal detection within the FAERS 
database using AI. One limitation was the lack of clear guidelines for control selection in 
disproportionality analysis. This is in part due to disproportionality analyses being frequently 
conducted against a background of the rest of the databases. Also, the choice of an 
appropriate control can sometimes be nearly impossible in a given dataset and the subjectivity 
associated with selection of controls. Nevertheless, this approach seems promising in some 
circumstances, in particular when the automatic process proposed in this study for the 
selection of controls within and outside the chemical subgroup of galcanezumab showed 
an 86% success rate.

Another challenge emerged from the manual process needed to verify alternative causes 
for adverse events through screening of co-reported drugs, as the AI framework did not 
fully address this step. Although the conditional inference trees could identify statistically 
significant differences in co-reported drug proportions, enhancing the dismissal of false-
positive signals, there remains a need for ad-hoc tools to automate Summary of Product 
Characteristics (SmPC) checks.

In addition, the framework did not establish a clear cutoff for the number of drug classes to 
identify viable controls, nor did it determine the optimal number of controls for disproportionality 
analysis, highlighting a need for further research. Also, while the number of alerts changes 
proportionally with the number of controls, developing systematic criteria to effectively 
manage this multiplicity issue in practice remains challenging, necessitating further validation 
across different drugs and databases.
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F5. Compliance with the governance framework

Table 17:	 Use case F: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle Activities SPEC DEV PreD PstD RU

Risk-based 
approach

This study adopted a systematic approach 
to identify and mitigate the impact of false 
positives in signal detection processes. 
When developing tools to support signal 
detection, developers should consider the 
overall impact the tool may have to the PV 
system within a QMS and consider the need 
for mitigations that may be required to 
support broader deployment.

A A N/A N/A N/A

Human 
oversight

In the study, medical experts played a 
crucial role in manually validating AI-
generated outputs to ensure accurate 
signal detection. The article emphasised 
the need for human review due to the 
complexity and variability in each case, 
underscoring the importance of involving 
domain experts in interpreting AI findings. 
The oversight involved identifying 
alternative causes for adverse events 
that AI might flag, ensuring alignment 
between algorithmic predictions and clinical 
knowledge.

A A N/A N/A N/A

Validity & 
Robustness

The article noted the need for validation 
and testing using FAERS data and 
simulations. Implementing controlled tests 
and optimising control selection addressed 
stability and prediction reliability across 
diverse drugs and spontaneous reporting 
databases.

A A N/A N/A N/A

Transparency Transparency was considered through 
documentation of the methodologies 
employed and the rationale for control 
selection, addressing variability impacts.

A A N/A N/A N/A

Data Privacy The method uses publicly available 
information on labelling alongside FAERs 
data which required limited consideration 
for data privacy.

N/A N/A N/A N/A N/A
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Principle Activities SPEC DEV PreD PstD RU

Fairness & 
Equity

The study emphasised the necessity of 
ensuring comparability and inclusivity 
in control selections to prevent bias. 
It underscored assessing data variability 
and comparability among drugs to ensure 
fair representation, addressing inequities 
possibly introduced by inadequate data 
collection or control dynamics. This was 
important for balancing comparability 
complexity and broader drug class 
inclusion.

A A N/A N/A N/A

Governance 
& 
Accountability

During the PoC, the accountability of the 
methodology remains with the developer. 
However, if the methodology is integrated 
into a production setting, accountability 
would transition to the human subject 
matter expert. Governance within a PoC 
ensures that scientific integrity principles 
are adhered to, while future product use 
governance should cover how the tool fits 
into the overall PV system and quality QMS.

A A N/A N/A N/A

Abbreviations
SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use
A: Applicable
NA: Not Applicable
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Use Case G: Generative Artificial Intelligence: 
synthesis and summary from a large unstructured 
safety document repository for facilitating 
pharmacovigilance evaluations
Source: Internal to CIOMS Working Group XIV member organisation
Area of PV: PV document retrieval
Note: This use case outlines the implementation of a GenAI solution by one CIOMS Working Group XIV member 
organisation to enhance its PV-related work processes. It is important to note that many MAHs and Regulatory 
Authorities (e.g. US FDA’s ELSA) globally are exploring GenAI technologies for potential work enhancement.

This use case reflects an approach that was developed and implemented prior to the release 
of this CIOMS guidance. As a result, the practices described within this use case may not 
fully align with the best practices or recommendations.

G1. Business rational and challenges

The curation of data to support PV evaluations – from safety analyses and signal assessments 
to aggregate reports and regulatory authority safety requests – is time- and labour-intensive, 
often requiring search, retrieval, review, and summarisation of vast amounts of unstructured 
safety data, from text-heavy clinical study reports and dossiers submitted to health authorities 
to extensive legacy safety analyses, and to signal assessments and scientific literature. LLMs, 
such as the GPT models can facilitate this effort for PV professionals with the capability to 
summarise and synthesise unstructured safety data from broad and/or varied repositories.

G2. Solution

With hundreds of thousands of documents rich in safety-related data, LLMs were employed 
to optimise the search, retrieval, review and summarisation of unstructured safety data in a 
manner specific to the parameters and requirements of a human PV professional.

A Custom AI Search engine tool was developed using C# & .Net Framework and leverages 
Microsoft’s semantic kernel SDK and RAG pattern to allow PV professionals to interact with 
unstructured safety data within private vector stores using a large language model with custom 
systems instructions. PV professionals submit safety data-related queries via a web front end 
which are routed to a private deployment of LLM along with context (data retrieved in-line from 
the vector store) and system instructions. Azure OpenAI provides rREpresentational State 
Transfer (REST) application programming interface (API) access to a powerful and diverse 
set of models (OpenAI Chat, OpenAI text embedding, GPT- 4.1 Series) and integrates these 
models with a large and diverse repository of unstructured safety data.

With access to the “text-in, text out” interface of the OpenAI model, PV professionals can 
provide an input prompt and the model generates text with usage of OpenAI and GPT-4.1 
Series models which facilitate interactive conversation with text-based inputs and responses; 
this also leverages Open AIs embedding models which converts text into dense vector 
representations for NLP tasks.

By automating the process of retrieving relevant information, PV professionals can redirect 
their time towards value-added endeavours rather than manual data sifting. The figure below 
outlines Azure LLM architecture and interface with data assets.
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Figure 7:	 An outline of our initial artificial intelligence architecture
Source: Internal to CIOMS Working Group member organisation. Figure reproduced with permission.

Development and deployment of a meticulously crafted vector index of relevant company 
file structures allows the organisation to leverage an LLM to easily and efficiently navigate 
documents, files and data available within those company files. By transitioning to newer 
models as they release, the organisation has observed improved accuracy and utility in 
responses, validated through a manual verification of processes.

Regular feedback sessions are conducted to refine the AI tool’s performance and uncover 
additional use cases. This iterative approach ensures continual improvement and minimises 
errors. Guidelines were also developed for framing questions to the model effectively, further 
enhancing the tool’s usability.

G3. Results

The GenAI tool in this use case has demonstrated potential as an AI ‘research assistant’ 
enabling PV workers to quickly and efficiently search hundreds and thousands of safety 
documents to provide structured and intelligent outputs.

For the current status of this project, the PV users are training to better understand and apply 
GenAI tool capabilities, particularly for summarising and retrieving safety data. Although no 
formal metrics were collected, QC was performed by the users and shared with the GenAI 
developers in the project team. The use of the GenAI tool by multiple PV users has been 
instrumental in evaluating the tool’s accuracy and performance. The manual verification 
process allowed the users to assess that the tool provides relevant search results, retrieves 
the correct information, and summarises the source materials accurately. Based on the 
feedback, the GenAI tool is being refined to deliver efficient and faster responses and include 
downloadable files of the safety data references. Enhancements include the integration of 
clearer instructions and contextual prompts to support more precise and relevant answers.
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Looking ahead, there are plans to expand this application of GenAI, focusing on areas such 
as extraction and summarisation of safety literature for signal detection purposes and 
outputs for case reporting. In addition, there may be potential to use GenAI applications to 
extract and create summary information for aggregate safety reports, support audits and 
inspections or support tasks related to benefit-risk assessment. For example, to the question 
on “EMA expedited reporting”, the GenAI tool was able to review and locate the appropriate 
documents from the very the large document repository and instantaneously provide extracted 
outputs in the form of tabular summaries of the expedited reporting requirements along 
with references of the source documents to support PV with case processing and safety 
database configuration.

Ultimately, leveraging AI-driven document retrieval and summarisation from large document 
repositories may help PV professionals in performing critical medical and scientific evaluations 
of safety information more efficiently, thereby enhancing product safety and efficacy.

G4. Challenges and Lessons Learned

The main challenges of OpenAI were high and unpredictable cost, a gap in required AI 
expertise, concerns relating to data privacy and security. Once these challenges were 
identified the company quickly developed methodologies to monitor and control API costs, 
optimising prompt design, deployed indexing, and established data security and privacy 
protocols to protect potentially sensitive information.

For implementation of GenAI projects cost control / cost capping at project onset to control 
project budget is highly recommended. Availability of AI experts / vendor at the early stages of 
the project would facilitate project development, while creating an indexing system improves 
efficiency of users in asking the targeted questions.

As part of further development of the program, it is envisaged that user quality assessments 
would be systematically collected and evaluated with feedback sessions that, over time, 
will build up a knowledge / experience base for developers to continually improve and 
enhance the GenAI tool.

G5. Compliance with the governance framework

During the development and pre-deployment phases, the GenAI project was carefully developed 
and managed with a limited scope, ensuring alignment with the applicable guiding principles 
as indicated in Table 18.

As the project transitions into production and its use and scope expand, careful consideration 
will be given to maintaining close alignment with these principles.

Therefore, compliance is indicated as closely aligned, laying a foundation of trust in the 
solution’s ability to perform vigilance tasks with adaptive and growth capabilities. This is 
explained in more detail in Table 18.
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Table 18:	 Use case G: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle Activities SPEC DEV PreD PstD RU

Risk-based 
approach

GenAI use is a closed environment used 
for training and testing during development 
and pre-development. However, there is 
communication of potential inaccuracies 
and pitfalls during these phases. Currently 
there is no anticipated (patient risk) for 
post-deployment or routine use. As GenAI 
achieves more general and expanded 
use, risks will be regularly reassessed. 
Therefore, all phases are considered 
partially aligned with this guiding principle. 
As described above specific data privacy 
and security protocols were developed.

A A A N/A N/A

Human 
oversight

Fully aligned in development phase, 
as there is human oversight from the user.

Moving into production use, consideration 
will need to be given to the level of human 
oversight required to mitigate against 
known risks of GenAI e.g. hallucinations and 
automation bias. In addition to individual 
accountability of the output.

A A A N/A N/A

Validity & 
Robustness

Validation and testing were conducted 
based on the appropriateness of the 
results.

Once in post deployment and routine use, 
the data sets are very large; however, 
expansion of use cases will follow a 
similar trajectory of human testing. 
Any inaccuracies in information retrieval will 
serve as valuable feedback for the GenAI 
developers to further refine and update the 
tool.

Whilst no formal metrics were collected, 
quality control from the perspective of the 
users to collectively review and assess the 
results and GenAI outputs is expected.

A A A N/A N/A

Transparency As the GenAI solution expands its scope 
and complexity during post-deployment 
and routine use, further realignment 
is anticipated to support post hoc 
transparency to the end user of the system.

Transparency in relation to the public is not 
applicable as this is a closed system.

A A A N/A N/A
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Principle Activities SPEC DEV PreD PstD RU

Data Privacy Fully in alignment during all phases. All data 
remains internal within the company. Also, 
role-based access and restrictions are 
applied. For example, individuals from the 
organisation’s safety department would not 
have access to unblinded clinical trial safety 
data in the document repository, i.e. search 
outputs would remain blinded.

A A A N/A N/A

Fairness & 
Equity

Inherent limitations and biases exist within 
safety data which may manifest themselves 
within GenAI based outputs.

PV professionals are aware of the 
limitations of safety data to limit the impact 
of bias.

A A A N/A N/A

Governance 
& 
Accountability

Accountability from system usage and 
implementation during development and 
pre-deployment, e.g. if system is clearly 
not useful, then it will be discontinued / 
upgraded.

Ultimately, regulatory accountability resides 
with subject matter expert / user as 
they are responsible to review and verify 
content. Therefore, partial alignment is 
anticipated from post-deployment onwards.

A A A N/A N/A

Abbreviations
SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use
A: Applicable
NA: Not Applicable
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Use Case H: Artificial intelligence to support 
diagnosis and prediction of (hydroxy)chloroquine 
retinopathy
Source:11,12,13,14,15

Area of PV: PV in The Clinic

H1. Business rational and challenges

PV in the clinic is concerned with the prevention and treatment of adverse drug reactions in 
individuals. Prevention may be primary, which can be achieved through identifying potential 
complex or non-obvious combinations of patient characteristics that are predictive of 
adverse drug reactions to guide optimum medication selection (i.e. precision medicine). 
It also encompasses secondary and tertiary prevention (i.e. early diagnosis of adverse 
drug reactions and ensuing interventions) to mitigate the impacts of ADRs. Examples follow.

Chloroquine and hydroxychloroquine are important drugs in rheumatology. Although relatively 
well tolerated compared to some other therapeutic options, retinal toxicity is a risk which 
can result in serious visual impairment if not detected early so that the drug may be 
discontinued in a timely manner. Even so, by the time of retinopathy diagnosis, there may 
be irreversible retinal damage. Conversely, if predictive AI can provide sufficient leading 
indicators of progression, therapy duration and attendant therapeutic benefits might be 
maximised. Historically, the gold standard for screening and detection has been fundus 
photography and automated perimetry. More recently, multifocal electroretinography (mfERG) 
and Optical Coherence Tomography (OCT) have been added to the diagnostic armamentarium. 
Each of these are routinely assessed by human readers, ideally retinal specialists, but subtle 
changes, including temporal patterns, can be missed, and not all locales have the necessary 
instrumentation or available retinal specialists. It would be ideal to augment human visual 
assessors to identify early functional changes indicative of retinopathy prior to onset of 
irreversibility or better predict progression. AI has shown potential in detecting or predicting 
various ocular diseases based on retinal images/fundus photography, such as age-related 
macular degeneration (AMD) and diabetic retinopathy (DR). More AI has been retrospectively 
developed and tested to diagnose or predict (hydroxy) chloroquine retinopathy.

H2. Solution

AI has been applied to colour fundus photographs, OCT and multifocal electroretinographic 
tracings for diagnosing hydroxychloroquine retinopathy. Fan et al studied hyperspectral 
imaging (HIS) of 176 fundus photographs from retinopathy positive (25) versus retinopathy 
negative (66) patients at a referral clinic using four deep learning models for the detection of 
retinopathy. Kulyabin et al compared deep learning-based classification of raw mfERGs versus 
models based on conventional readout parameters of the mfERG for classification, and for 
prediction (regression) of visual field sensitivities from 53 predominantly female patients 
(35 retinopathy negative, nine minimal retinopathy, and nine manifest retinopathy) monitored 
with mfERGs and perimetry for a period of 0.7-20.9 years. Kalra et al used random forests 
for automated diagnosis and prediction of disease progression using clinical features and 
features based on spectral domain OCT (SD-OCT) obtained from 388 eyes / 368 patients, 
a majority being female. Habib et al trained support vector machines (SVM) on mfERGs to 
identify hydroxychloroquine retinopathy in 1463 eligible eyes (748 predominantly female 
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patients), of which 95 eyes (48 patients) were eligible for inclusion as controls. Very recently, 
Woodward-court et al reported the development and application of a convolutional neural 
network (CNN) to detect the presence and predict future development of hydroxychloroquine 
retinopathy from SD-OCT by calculating a Likelihood of Retinopathy Score (LRS). The study 
is notable for a larger and more diverse dataset involving 409 patients (171 positive for 
hydroxychloroquine retinopathy and 238 negative) and 8251 SD-OCT b-scans (1988 volumes) 
from five independent international clinical locations representing relatively diverse self-
reported racial or ethnic groups, as well as two different SD-OCT technologies.

H3. Results

The best performing deep learning models in the study of Fan et al achieved accuracy, 
precision, recall, specificity, and F1-scores of ≥0.95., with superior performance using 
hyperspectral images versus the original retinal images. Habib et al’s SVM returned a 
specificity of 84.0% with sensitivity of 90.9%. Performance could be calibrated to place a 
premium on sensitivity for screening or specificity for diagnosis. Kalra reported a mean AUC 
of 0.97, a sensitivity 95% and specificity of 91% for detection, and mean AUC=0,89, recall 
of 90% ad specificity of 80% for progression prediction. Kulyabin reported that AI-based 
models using full mfERG traces had a balanced accuracy of up to 0.795, precision of up 
to 0.844, recall of up to 0.866, and F1-score of up to 0.771. Woodland-Court reported 
that their CNN-based algorithm was able to detect hydroxychloroquine retinopathy at the 
time of clinical diagnosis, and with a substantial lead-time before clinical diagnosis (mean: 
220.8 days before clinical diagnosis; accuracy: 0.987 [95% CI: 0.962—1.00]; sensitivity: 
1.00 [95% CI: 0.833—1.00]; specificity: 0.983 [95% CI: 0.952—1.00]; PPV: 0.944 [95% 
CI: 0.836—1.00]; negative predictive value: 1.00 [95% CI: 0.937—1.00]). For eyes that 
developed retinopathy, the average lead time relative to clinical diagnosis was 2.74 years. 
The algorithm also demonstrated face validity based on the high coefficient of determination 
(0.93) for LRS between left and right eyes and the temporal evolution of LRS consistent with 
the known clinical trajectory of this retinopathy.

H4. Compliance with the governance framework

In considering the alignment of the reviewed studies with the governance framework, we note 
several points up front. The studies were retrospective and feasibility/pilot studies, without 
reported advancement to routine use in the clinic.

Challenges and Lessons Learned.

Although the most recent cited study by Woodward-Court was an advancement relative to 
previous studies in several respects, the study populations were more/less small and limited 
or imbalanced in various respects according to the study. Because the clinical scenarios for 
drug use often involve autoimmune disorders, the subjects were predominantly female. Asians 
were under-represented in study samples and there was a need for further assessment in 
larger and more diverse populations. Nonetheless, the most recent study by Woordward-Court 
was larger and more diverse than previous studies, and also included and an assessment 
using two different SD-OCT instruments. Over the multiple geographically distinct data 
sets, instrumental variability normally presents a potential generalisability challenge that 
is not always accommodated. As is often the case in AI diagnostic applications involving 
retinal pathology, retinal comorbidities were excluded, or under-represented, which limits 
generalisability to more diverse patient populations that have multiple retinal comorbidities 
(e.g. diabetic retinopathy and drug-induced retinopathy). The use of eyes as the unit of 
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observation raises the question of pseudo-replication and its potential impacts of performance 
estimates, though confidence intervals were not typically presented.

Importantly, the most contemporary of the cited studies strongly emphasised their solution 
within the context of the challenges and corresponding desirable features of diagnosis 
from health-care systems perspective, namely, limiting the patient and the health care 
system burden using a single, widely available, automatable diagnostic solution that could 
“democratise” diagnosis to clinicians of various specialisation levels.

The rarity of the disease would require large patient cohorts for such a clinical study, 
a significant hurdle to prospective validation. Validation of the prediction of future clinical 
retinopathy requires very lengthy patient surveillance. Prospective deployment in the clinic 
remains challenging due to the time and financial resources required for seeking regulatory 
approval for software as a medical device in many areas. Further work may include a financial 
assessment of deployment of the algorithm in the ophthalmology clinic to support decisions 
on future development.

Table 19:	 Use case H: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle Activities SPEC DEV PreD PstD RU

Risk-based 
approach

Not aligned. Risk assessment and risk 
mitigation plans not provided in these pilot 
studies. Placement within a human-in-the-
loop framework was explicitly considered in 
one or more studies.

N/A N/A N/A N/A N/A

Human 
oversight

Partial alignment. One or more of the 
publications, which report feasibility/pilot 
studies in clinical settings, discuss the 
proper deployment with respect to human 
oversight, such as HITL. However, change 
management and staff training plans are 
not discussed. Discussed is the fact that 
the available human oversight in some 
locations may be provided by generalists 
with less experience and expertise 
than retinal specialists, affording more 
opportunity for incremental benefits in 
underserved settings.

A A N/A N/A N/A
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Principle Activities SPEC DEV PreD PstD RU

Validity & 
Robustness

Partial alignment. Reference standards 
defined. One or more studies note the 
limitation of the imbalanced data sets used 
that impair generalisability. Also, in one/
more studies patients with other ocular 
pathology excluded so the two classes 
were HCQ retinopathy present versus 
normal retina, which limits generalisability 
to screening in patients with other 
coexistent ocular disorders that may affect 
the retina. Source population (deployment 
domain) not clearly defined in all studies. 
No discussion of integrating data pre-
processing (e.g. cropping retinal images) 
into routine use). In some studies unit of 
observation was “eyes” raising questions 
about pseudo-replication.

A A A N/A N/A

Transparency One/more papers report adherence to 
tenets of the Declaration of Helsinki 
and obtained Institutional Review Board 
approval. One or more papers described 
explanations of results such as heatmaps of 
feature distributions.

A A A N/A N/A

Data Privacy One or more of the referenced studies 
declared adherence to tenets of the 
Declaration of Helsinki and obtained 
Institutional Review Board Approval.

A A A N/A N/A

Fairness & 
Equity

One/more of the referenced studies report 
adherence to tenets of the Declaration of 
Helsinki and obtaining Institutional Review 
Board approval. One or more of papers 
acknowledge that data under-represents 
specific groups of persons such as 
Asians, who may display different findings 
and recommends further assessment 
with larger data sets with more diverse 
representations. Further discussion involved 
scenarios in which retinal specialists may 
not be available, such as under-resourced 
or under-represented locales, as also 
discussed in human oversight above.

A A A N/A N/A

Governance 
& 
Accountability

These studies which occurred in clinical 
settings were conducted according to the 
guidelines of the Declaration of Helsinki 
and approved by the respective Institutional 
Review Board.

A N/A N/A NA N/A
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Abbreviations
SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use
A: Applicable
NA: Not Applicable
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Appendix 4.  
CONTENT RELATED TO EXPLAINABILITY 

AND TO FAIRNESS & EQUITY

Illustrative examples related to Explainability
As stated in Chapter 6 on Transparency, it is essential to disclose why, when and how AI 
is being used in different PV tasks. This is to maintain trust, awareness, and responsibility 
among stakeholders, including developers, PV professionals and decision makers, regulatory 
authorities, HCPs, and patients. However, the requirements for explainability, and the 
manner in which it is employed, differ according to the context, for example, who is seeking 
the explanation, for what purpose, the nature of the task, and the stage of the system’s 
lifecycle.1 In the following sections, illustrative examples are presented to demonstrate the 
range of scenarios. The associated benefits of explainability as highlighted in the examples 
are summarised and subsequently synthesised at the end of this section.

Examples of explainability in artificial intelligence-supported 
pharmacovigilance tasks

Consider a setting in which a PV officer is reviewing a case selected by an AI system as of 
interest, yet the rationale for this classification is not immediately apparent. In such situations, 
the reviewer may benefit from access to information indicating which text in the case data 
contributed to the AI’s recommendation. An actual example of this is described below.

The Information Visualization Platform (InfoViP), developed for the US FDA’s Center for Drug 
Evaluation and Research (CDER) is an example of how explainability may benefit the human 
experts engaged in signal detection and assessment supported by an AI system.2 InfoViP 
uses NLP and several other components to process post-marketing data from multiple 
sources (FAERS, product labels, and biomedical literature) and provides a visualisation of 
the information, i.e. explanations, to support medical reviewers who detect and evaluate 
potential signals from the millions of adverse event reports submitted to the US FDA’s FAERS 
database. The NLP component, the Event-based Text-mining of Health Electronic Records 
(ETHER), coupled with modern frontend techniques, provide visual information by colour-coded 
highlighting of relevant text in the case narrative to help reviewers focus on signal-related 
information. An informed model further identifies cases containing enough information to 
assist reviewers assessing the report quality, and provides concrete explanations of these 
selections. All these functionalities, combined with case deduplication and several filtering 
options, facilitate speedy review by the medical reviewers, an otherwise humanly impossible 
task across millions of reports.3
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Figure 8:	 US FDA’s Information Visualization Platform user interface 
illustrates the system capabilities, focusing on the features that 
positively contribute to classification for accessibility

Source: Botsis T et al, 20243

The example above illustrates a core benefit of explainability described by Albahri et al 
(2023).4 Explainability can facilitate human experts in making “sound and reliable” decisions. 
Ultimately, when the human decision and the accompanying explanation are retained, 
this information would nurture trust of the system owner and QA staff who are tasked with 
ensuring compliance, as well as the trust of regulators who may wish to inspect why certain 
cases are selected or rejected as signals.

Also, it is conceivable that explanations could lead a user to notice a bias or spurious 
correlation that is leading to incorrect predictions. Reporting this back to the development 
team can contribute towards future improvement. In this way, explainability is useful for 
ongoing vigilance against bias risk and performance issues that may appear post-deployment 
and for continually ensuring the trustworthiness of the decisions made. As a result, post hoc 
explainability has resulted in increased trust and the perception of fairness in AI-supported 
decision making.4

Examples of pharmacovigilance stakeholders benefitting from explainability

While the likelihood of an individual from the general public requiring explainability in a PV 
setting may be small, the possibility cannot be excluded entirely as the use of AI becomes 
more commonplace. Some conceivable scenarios are described below:

	— If a reporter (HCP or patient) reports a serious AE and the report is processed as a 
non-serious case by an AI triage system, the reporter may request an explanation 
from the MAH. Traditionally, the reporter could receive an explanation from the PV 
officer who has made the final triage decision. However, when this takes place in an 
automated AI triage process, a lack of explainability may impact trust and acceptance 
of the result by the reporter.
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	— If GenAI would be used in assisting a pharmacist in medication therapy management 
to prevent drug interactions, both the pharmacist and the patient are directly exposed 
to the AI’s recommendations.5 Here, questions concerning the AI recommendations 
could be raised by both parties.

Examples of explainability in system development

A data scientist or ML engineer who is training the AI system benefits from explainability when 
it reveals which features are used by the AI to reach a specific prediction or when it reveals 
a bias in the training data. Especially in complex systems which lack inherent explainability, 
supporting tools could provide explanations that facilitate troubleshooting by revealing what 
to change or exclude in order to “flip” the outcome.6 However, in most cases, tweaking the 
system architecture of a deep neural network or specific features based on such insights can 
be quite challenging. These explainability methods are more likely to identify hidden biases 
in the training data which can be corrected as illustrated in the example below.

Ribeiro et al (2016)7 demonstrates how Local Interpretable Model-Agnostic Explanations 
(LIME) could be leveraged to support explainability and reveal the likely cause of incorrect 
predictions. In this experiment, the model that was trained to distinguish images of dogs and 
wolves was first intentionally trained to associate wolves with snowscapes. In other words, 
the training data was deliberately biased by excluding images of wolves in other seasons. 
This resulted in predictions that included a wolf against a green background identified as 
a dog and a husky in a snowscape identified as a wolf. LIME was used to show subjects 
which areas of the image were used as features by the AI in its predictions to see if the 
subjects could identify the cause of the misidentification. The subjects successfully identified 
background snow as the potential feature that led the AI to make the incorrect predictions. 
Thus, demonstrating how post-hoc explainability methods can be used to explain a prediction 
made by an inscrutable deep neural network and uncover the underlying issue in the training 
data and the resulting spurious correlation that led to the incorrect output.

In the context of PV, similar techniques could be used to highlight words in the text which 
are picked up by the AI as relevant features. In a real-life but unpublished example in which 
an AI triage system was misidentifying some serious cases, PV SMEs benefited from seeing 
which terms in the case were considered by the AI in its seriousness predictions. In this case, 
a LIME analysis revealed a focus on the drug name. Combined with the fact that the missed 
serious cases concerned Over the Counter (OTC) drugs, the PV SMEs discovered that the 
AI was basing decisions on the drug name and had learned spurious assumption that OTC 
drugs are not likely to cause serious events. Using the insight gained from explainability, 
the developers could reject the model in favour of another one, examine the training data 
for bias such as the lack of serious cases associated with OTC drugs or when there is no 
bias, and solve the issue through feature engineering by instructing the AI not to consider 
the drug name in its decisions.

Explainability, therefore, can help developers make informed decisions when assessing AI 
models by uncovering hidden biases as well as features and spurious correlations that are 
resulting in incorrect predictions. Explainability may also reveal the underlying factors that 
result in performance differences between models that are trained on the same training 
data and aid the developer in model selection. In turn, transparent documentation of this 
process will go a long way towards nurturing trust in the system, not only for the developers 
but also for the system owners, users, and the regulators.
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Examples of artificial intelligence-systems interacting with health care 
professionals and patients

A hypothetical example can be the case of a HCP who is requesting product-specific information 
via a chatbot provided by a MAH. Such a chatbot could have multiple objectives ranging 
from the provision of drug product information to the collection of AE and quality defect 
reports. When the HCP notices that the chatbot response is inadequate, i.e. not considering 
key medical terms or AEs, or providing questionable information, the HCP may contact the 
MAH for an explanation.

Whilst the scenario above is a fictive example, one example of a chatbot that is currently 
available is the Smart Artificial Intelligence Resource Assistant for Health (SARAH) on the 
WHO website. This is a prototype chatbot that is intended to provide tips on health topics and 
not medical advice as clearly stated on the landing page of SARAH.8 On one hand, SARAH 
exemplifies how such an application could be of service to the public as it is available 24/7 
and in eight languages. On the other hand, incidents of the chatbot providing inaccurate 
or incorrect information or being unable to answer some queries have unfortunately been 
reported in the media and taken up in the OECD AI incidents monitoring database.9 This 
illustrates how, when a chatbot is deployed, the interacting patient or healthcare provider 
or the media may challenge the information that is provided. It is therefore conceivable that 
in PV, when a MAH deploys an AI solution that interacts directly with the public, a lack of 
explainability may be an important consideration.

Finally, any system that interacts directly with the public in a medical setting warrants extra 
attention in that a HCP is likely to notice medically incorrect information, but most consumers 
and patients may not be able to do this. Individuals without a medical background will be at 
risk of accepting and acting on medically incorrect information. To illustrate this point, in a 
study of trust and medical advice provided by ChatGPT, persons without a medical background 
have been found to trust the chatbots for lower-risk health topics.10 Without the medical 
background, a layperson is at increased risk of harm by not being able to recognise incorrect 
information. In a recent systematic review and meta-analysis of 83 studies comparing GenAI 
models to physicians in diagnostic tasks, AI models achieved an overall diagnostic accuracy 
of about 52% (95% CI: 47.0-57.1 %) and performed comparably to non-expert physicians, 
but significantly worse than expert physicians.11

Thus, aside from an inability to provide an explanation to an individual from the public who 
is challenging the AI output, system owners must thoroughly consider and mitigate the risks 
of an AI solution that interfaces with the general public. This also touches on the subject of 
accountability since it is not the chatbot that is held accountable for any harm that befalls 
the individual.

Examples where explainability is not available and not required

To illustrate a situation in which explainability is not necessary nor possible, consider first 
how the use of publicly available machine translation tools is now commonplace and how the 
public generally does not require detailed explanations into how the AI system translated a 
specific piece of text. Consider also how translations in a GxP-regulated environment require a 
quality check regardless of whether the translation was carried out by a human or a machine. 
Furthermore, the quality check is normally carried out by an individual who is proficient in both 
the source and destination languages. In some such circumstances, not only will the human 
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responsible for the quality check be able to spot errors, but also understand the underlying 
reasons for machine translation errors. An example of a translation issue with a self-evident 
root cause is the case of biased gender assignment that occurs when translating a genderless 
language such as Finnish to English.12 The bilingual human reviewing the translations would 
easily notice the gender bias, understand why this has been introduced by the AI and can 
correct this accordingly. In this setting, consideration may also need to be given to the risk 
of automation bias, where repeated exposure to seemingly correct outputs can cause the 
reviewer to become less vigilant and overly reliant on the machine translation. See also 
chapters on Risk-based approach, Human oversight, Data Privacy, and Fairness & Equity.

In PV, another example of AI use, which may not require explainability would be the automatic 
de-identification of case narratives presented by Meldau et al 2024.13 In this case, a system 
using an LLM was trained to automatically detect likely person names and initials in case 
narratives for the purpose of redaction. While a HITL will not be able to know why a specific 
piece of text was highlighted as a likely person name by the LLM, this is not required for 
them to decide whether it should be redacted. More important is that the AI system has good 
enough performance, especially with respect to false negatives (missed names or initials), 
that human operators can rely on its output. At the same time, the lack of explainability 
of this method did present a challenge in assessing fairness and equity, when the only full 
name in the test set that was not redacted by the method was found to be of Indian origin, 
as discussed in the above-cited paper.

Example of how explainability may improve human processes and decision making

A final example illustrates how inherently explainable AI models may help improve human 
processes and decision making. In the evaluation of a statistical method for duplicate 
detection in AE reports,14 a pair of Norwegian reports were identified as suspected 
duplicates, and ranked above all other pairs in the data set by the AI model. However, these 
two reports were not labelled as known duplicates and did not look like obvious duplicates 
to the human assessors: onset dates and ages that were close but not matching, and there 
were no exact matches on AE terms (although they were clinically similar). Inspection of 
the AI model’s output revealed that its classification of this pair as likely duplicates by the 
AI model was driven by an exact match on six identical drug substances, which were not 
commonly co-reported. The cases were subsequently confirmed by the national regulator to 
be previously unknown duplicates that concerned the same incident but had been reported 
by two different physicians in the same hospital, thus accounting for the differences.14 In 
this example (and in general), human assessors did not fully appreciate how unlikely it was 
for two independent reports to match on six distinct drug substances and therefore failed to 
lend this piece of evidence the appropriate weight in their assessment. Insights like this could 
be used to improve evaluation of suspected duplicates by human operators going forward.

Examples of methods supporting explainability

Some methods for post-hoc explainability in use at the time of writing this report include:

	— LIME - see the example of Ribeiro et al (2016)7 described earlier in this chapter;

	— Shapley Additive exPlanations (SHAP).

An example of SHAP explainability in a supervised ML model used to support signal validation 
is presented by Imran et al (2024).15
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	— Trust scores that indicate the model’s uncertainty for the output.16

	— Confidence scores are a metric that is usually available and can be used to flag output 
that is uncertain for human review.1

	— Visualisation through highlighting of text that was considered by the AI in its prediction 
and saliency maps using a heat map overlay to indicate areas of the input image that 
are relevant for the model’s prediction.

Although assessing and processing images is not a mainstream activity in PV, saliency 
maps are mentioned as another example to complete the view of the current landscape. 
See examples in Plass et al (2023).16

In the case of PV where the data is predominantly text based, visual explanations are likely 
to take the form of highlighting relevant text within the case data. See also the US FDA 
InfoViP described above as an example of explainability benefits.2,3

Content related to Fairness and Equity
While not all of the examples provided below are specific to PV, they illustrate the potential 
impact of inadequate data, bias from underrepresented populations and explicit bias potentially 
leading to unfair treatment of specific populations, underserved populations, and potential 
treatment inequality.

Example of inadequate training of AI solutions and/or inadequate data sets that 
introduced unfair bias and resulted in inequity.

In the US, prescription opioids are tracked through electronic databases, Prescription Drug 
Monitoring Programs (PDMPs). While not a PV specific example, Bamboo Healths NarxCare® 
is an example of an AI-powered tool that leverages PDMPs to calculate an opioid risk metric 
to predict the likelihood of a potential overdose. Although the tool is intended to support 
medical decisions, there have been observations that patients who are high health care 
utilisers with complex medical conditions may be discriminated against and underserved for 
pain management because of a “high risk score”.17 The score is calculated based on limited 
data available in the PDMP and does not consider any other factors when calculating the risk 
score. One factor that influences the score is the number of prescribers. Patients treated 
at teaching hospitals with multiple healthcare prescribers may have “too many prescribing 
physicians” and they may be interpreted as seeking treatment from multiple physicians to 
obtain multiple prescriptions. An April 2021 study in Drug and Alcohol dependence found 
that “common data driven algorithms” misclassified 20% of patients with cancer who often 
see multiple specialists as patients seeking multiple physicians in an effort to obtain multiple 
opioid prescriptions. As noted by the authors, the PDMP data lacks diagnostic information 
and other critical patient context limiting ability to distinguish misuse from appropriate 
clinical use. An October 2021 study published in Drug and Alcohol Dependence conducted 
an independent validation study and found that the NarxCare tool had a 17.2% false positive 
and 13.4% false negative.18

In this example, bias was introduced into the NarxCare tool because of inadequate data 
that did not account for subgroup factors (e.g. patients with complex medical conditions, 
healthcare models that result in multiple prescribers, lack of context for patients who require 
prolonged opioid use, lack of diagnostic information) potentially resulting in inappropriate 
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and misleading high patient opioid risk score predictions. The threat to fairness and equity 
for patients within subgroups who have a high score assigned because of bias, is that they 
may not receive adequate pain management when the high score is considered in isolation.

Within PV, the risk to fairness and equity are primarily from explicit biases that may result 
in negative impact or may result in discriminatory harm to subpopulations underserved by 
an AI solution. The NarxCare example, while not PV related, demonstrates both explicit 
bias from inadequate data, lack of context and implicit bias because negative stereotypes 
associated with “high health care utilisers” were applied.17

Example of bias applied because of under-represented populations

In Brazil, the assertiveness outcomes of the skin’s lesions classification using artificial neural 
network in Caucasian patients and Brazilian patients were compared. The skin lesions were 
classified using basic architecture of CNN. The International Skin Imaging Collaboration 
(ISIC) database was used to train the neural network. Approximately 25 thousand images of 
skin lesions from the ISIC database were applied to the CNN. These images have included 
melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign keratosis, 
dermatofibroma, vascular lesion, and squamous cell carcinoma lesions. The tests performed 
with ISIC patients had accuracy rates close to 90%. However, the accuracy rate for detecting 
skin lesions was less than 40% when the tests were carried out with Brazilian patients as 
compared to the higher accuracy of 90% with Caucasian patients. Thus, the potential for 
inequity in proactive treatment of skin lesions in Brazilian patients would be higher as a result 
of the low CNN accuracy detection rate.19

Example of Explicit negative bias

In Appendix 4, “Examples of explainability in system development” included an example 
describing an AI triage system that incorrectly identified serious cases. The AI solution 
incorrectly learned to predict any AEs associated with an OTC drug of interest as being non-
serious because serious events were under-represented in the training data. This can also 
be considered an example of explicit negative bias. In addition to the inadequate training 
data set, there was an explicit bias that it was not likely the OTC products in question would 
have serious AEs associated with the use of the products. Since populations that may not 
have the same means to seek treatment at a medical facility or access to a HCP may be 
reliant on OTC products, and these groups have a high likelihood of being from minority 
groups, a systematic misclassification of serious reports for OTC products as being non-
serious potentially impacting safety risk identification and assessment could be seen as a 
threat to fairness and equity.
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Appendix 5.  
CIOMS WORKING GROUP MEMBERSHIP 

AND MEETINGS

The CIOMS Working Group XIV on Artificial intelligence in pharmacovigilance included 
the following groups of stakeholders: academics, pharmaceutical companies, regulatory 
authorities, as well as national and international organisations. The meeting minutes that 
document the report writing process can be found on the CIOMS website at www.cioms.ch.
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Name Company/Organisation Country

Altman, Russ Stanford University USA

Botsis, Taxiarchis Johns Hopkins University School of Medicine USA

Dogné, Jean-Michel University of Namur Belgium
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Amelio, Justyna AbbVie UK
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Bate, Andrew GSK UK

Bellur, Arvind CSL Behring USA

Berridge, Adrian Takeda Development Center Americas, Inc USA
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Cherkas, Yauheniya Johnson & Johnson USA

Cooper, Selin AbbVie UK

Diniz, Mariane Bayer Brazil

Domalik, Douglas AstraZeneca UK

Franco, Piero 
Francesco

Pfizer Italy

Girod, Julie Sanofi USA

Grabowski, Neal Sanofi USA

Hauben, Manfred Merck KGaA, Darmstadt, Germany USA

Henn, Thomas United Therapeutics USA

Kara, Vijay GSK UK

Kempf, Dieter Genentech USA

Kidos, Kostadinos Formerly Takeda Development Center Americas, 
Inc

USA
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Pharmaceutical companies

Name Company/Organisation Country

Lorenz, Denny Formerly Bayer AG Germany

MacEntee Pileggi, 
Elizabeth

Johnson & Johnson USA

Patel, Ravi United Therapeutics USA

Reinhard Pietzsch, 
John

Bayer Germany

Römming, Hans-Jörg Merck KGaA, Darmstadt, Germany Germany

Straus, Walter Moderna USA

Whitehead, James AstraZeneca UK
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Name Company/Organisation Country

Buch, Brian Medicines and Healthcare products Regulatory 
Agency (MHRA)

UK

Durand, Julie European Medicines Agency (EMA) The 
Netherlands

Egebjerg Juul, Kirsten Danish Medicines Agency (DKMA) Denmark

Harrison, Kendal Medicines and Healthcare products Regulatory 
Agency (MHRA)

UK

Hirokawa-Voorburg, 
Satoko

Health and Youth Care Inspectorate (HYCI) The 
Netherlands

Horst, Alexander Swissmedic Switzerland

Jensen, Morten Danish Medicines Agency (DKMA) Denmark

Kjær, Jesper Formerly Danish Medicines Agency (DKMA) Denmark

Ling, Benny Health Canada Canada

Da Luz Carvalho 
Soares, Monica

Brazilian Health Regulatory Agency (ANVISA) Brazil

Matsunaga, Yusuke Pharmaceuticals and Medical Devices Agency 
(PMDA)

Japan

Mentzer, Dirk Paul-Ehrlich-Institut (PEI) Germany

Messelhäußer, 
Manuela

Formerly Paul-Ehrlich-Institut (PEI) Germany

Moreira Cruz, Flávia Brazilian Health Regulatory Agency (ANVISA) Brazil

Perez, Nicolas Swissmedic Switzerland

Scholz, Irene Swissmedic Switzerland

Stammschulte, 
Thomas

Swissmedic Switzerland
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Regulatory authorities

Name Company/Organisation Country

Tregunno, Phil Medicines and Healthcare products Regulatory 
Agency (MHRA)

UK

National and international organisations

Name Company/Organisation Country

Mathur, Roli Indian Council of Medical Research India

Meldau, Eva-Lisa Uppsala Monitoring Centre/World Health 
Organization

Sweden

Norén, Niklas Uppsala Monitoring Centre/World Health 
Organization

Sweden

Rosenfeld, Stephen North Star Review Board USA

Yau, Brian World Health Organization Switzerland

CIOMS

Name Company/Organisation Country

Heaton, Stephen Individual expert Germany

Hill, Sanna CIOMS Switzerland

Le Louët, Hervé CIOMS Switzerland

Rägo, Lembit CIOMS Switzerland

Rannula, Kateriina CIOMS Estonia

Tsintis, Panos CIOMS UK

The Working Group XIV met 11 times from 2022 to 2025, as below, and most of the meetings 
were hybrid in nature.

Chapter 1: Geneva, Switzerland 	 18-19 May 2022

Chapter 2: Geneva, Switzerland	 10-11 October 2022

Chapter 3: Virtual meeting	 19 January 2023

Chapter 4: Virtual meeting	 12 April 2023

Chapter 5: Zurich, Switzerland	 6-7 June 2023

Chapter 6: Virtual meeting	 8 November 2023

Chapter 7: Virtual meeting	 11 January 2023

Chapter 8: Geneva, Switzerland	 7-8 March 2024

Chapter 9: Darmstadt, Germany	 24-25 September 2024

Chapter 10: Geneva, Switzerland	 25-26 June 2025

Chapter 11: Virtual meeting	 8 September 2025

The CIOMS Working Group XIV Editorial Team met 28 times from March 2024 to October 2025.
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Appendix 6.  
PUBLIC CONSULTATION COMMENTATORS

Name Company/Organisation Country/
region
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Chouiyakh, Maria Mohammed V University Morocco

Dave, Jay COD Research PVT LTD USA

de la Peña Solís, 
Francisco José

Novo Nordisk Mexico

El Hussien, Amira RAY CRO Egypt

Ezzeldin, Hussein US FDA USA

Freixas, Elisabet Bristol Myers Squibb Switzerland

Ghimire, Namita Nepal Health Research Council Nepal

Grigolo, Sabrina EUPATI Italy

Gutierrez, Israel Caparna Inc. USA

Hapani, Kalindi COD Research PVT LTD India

Heitmann, Martin The Triality Group, LLC Germany

Ho, Jeffrey Perigent UK

Iyer, Anand Johnson and Johnson USA

Jakubczyk, Jan PIC/S Good Pharmacovigilance Practices 
Working Group on AI and Machine Learning, 
Polish Chief Pharmaceutical Inspectorate

Poland

Josephson, Aaron Teva Pharmaceuticals USA

Kessi, Una HDI Safety, Oracle Health and Life Sciences UK

Klueglich, Matthias DGPharMed Germany

Layton, Debbie Lane Clark & Peacock LLP UK

McAteer, Kaitlyn Merck Animal Health USA
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Name Company/Organisation Country/
region
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Belgium
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Søren
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Prajapati, Vatsal COD Research PVT LTD India

Prendergast, Christine PIC/S Good Pharmacovigilance Practices 
Working Group on AI and Machine Learning, 
HPRA

Ireland
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UK

Sahu, Aneesha US FDA USA
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Expert Circle Working Group on AI and Machine 
Learning Chairperson, Health Canada

Canada

Santana-Quintero, Luis US FDA USA

Schaeffer, Brian Johnson & Johnson USA

Scheerlinck, Rudi Merck KGaA Germany

Shee, Angela Johnson & Johnson USA

Singh Bedi, Simranjeet Accenture Solutions Private Limited India

Smith, Sean US FDA USA

Stockton, Brandi The Triality Group, LLC Germany

Thomas, Michael American Society of Pharmacovigilance 
Physicians

USA

Trevett, Kiernan Roche USA

Tsvetanova, Antonia Lane Clark & Peacock LLP UK

van Hunsel, Florence Pharmacovigilance Centre Lareb The 
Netherlands

Viñas, Norbert Vigintake SL Spain

WENG, Xinyu PIC/S Good Pharmacovigilance Practices 
Working Group on AI and Machine Learning, 
WHO

Switzerland

Wilson, Marie-Claire Bristol Myers Squibb Switzerland

Yuen, Alexander Bristol Myers Squibb Switzerland
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Name Company/Organisation Country/
region

Zdorovtsova, Natalia Lane Clark & Peacock LLP UK

Zhou, Jessica US FDA USA

Anonymous Sanofi USA

Anonymous Jazz Pharmaceuticals Italy
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This report on Artificial intelligence in pharmacovigilance 
addresses a rapidly emerging cross-disciplinary field that is 
at the intersection of pharmacovigilance, computer science, 
mathematics, regulation, law, medicine, human rights, psychology 
and social science. Consequently, just as with medicinal 
products, it is important to establish the approved indications, 
posology, side effects, and warnings and precautions for use of 
artificial intelligence in pharmacovigilance. The latter must be 
clearly defined and understood by many people from different 
backgrounds to propel research and practical implementation 
in an effective, safe and responsible manner. The diverse pool 
includes professionals, researchers, and decision makers working 
in pharmacovigilance in biopharmaceutical industry, regulatory 
authorities, and academia. It also includes software vendors that 
develop artificial intelligence solutions for pharmacovigilance, 
including signal management and all aspects of Individual Case 
Safety Report processing. This report provides the requisite 
terminology and conceptual understanding to actively engage 
in this space, either by participating in the applied scientific 
research and public discourse, or by performing evaluations 
and making decisions at one's organisation.

Artificial intelligence in pharmacovigilance. Report of the CIOMS Working 
Group XIV. Geneva: Council for International Organizations of Medical 
Sciences (CIOMS), 2025.

This publication is freely available on the CIOMS website.

CIOMS publications may be obtained through the publications emodule at 
https://cioms.ch/publications/. CIOMS, P.O. Box 2100, CH1211 Geneva 2, 
Switzerland, www.cioms.ch, email: info@cioms.ch.

https://cioms.ch/publications/
http://cioms.ch
mailto:info%40cioms.ch?subject=
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