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PREFACE

The Council for International Organizations of Medical Sciences (CIOMS) has played a pivotal
role in the advancement of modern pharmacovigilance (PV) by developing guidelines that
address ethical and scientific aspects of drug’ development and safety. Notably, CIOMS has
published guidance documents that have supported a structured approach for the collection
and reporting of adverse drug reactions (ADRs) in addition to guidance on practical aspects
of signal detection in PV, fostering international collaboration and standardisation in drug
safety monitoring.

The thalidomide tragedy of the late 1950s and early 1960s exposed severe deficiencies in
global drug safety practices, highlighting the need for comprehensive data collection and
international harmonisation. In response, the World Health Organization (WHO) established
the Programme for International Drug Monitoring in 1968, initiating efforts to share individual
case reports between countries and harmonise data practices. Building on these foundational
efforts, the late 1980s and the 1990s saw key CIOMS reports like the Monitoring and
Assessment of Adverse Drug Effects (1985) and the International Reporting of Adverse
Drug Reactions (1987), both by the CIOMS Working Group |, and the Current Challenges
in Pharmacovigilance: Pragmatic Approaches (1999) by the CIOMS Working Group V.
Subsequent CIOMS Working Group reports and the establishment of the International Council
for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) aimed
to address the fragmented approaches to drug safety identified decades earlier, providing a
framework for standardised adverse event (AE) collection and reporting in addition to signal
detection processes.

Advancements in technology are transforming PV, with examples ranging from smart-phone
and web apps for direct AE reporting,! to the integration of data across large health networks
to enable nearly real-time protocol-based assessment of AEs.2 The application of artificial
intelligence (Al) to PV offers the hope of enhancing both the efficiency and quality of PV, but it
calls for explainable, reliable, and responsible Al use, recognising that its usefulness requires
human decision making and its acceptability needs to conform to regulatory expectations.
Equally important is the ethical and responsible use of data, which underpins the integrity
of Al outcomes and fosters public confidence in these technologies.

As Al continues to evolve and impact biomedical research, its increased integration in and
impact on PV practice is inevitable. Given Al's significant potential to enable transformative
advancements, it is imperative that we engage in rigorous and forward-thinking discourse:
how do we envision its development, validation, and deployment within this domain?

Since the CIOMS expert Working Group XIV on Al in PV was established in early 2022, there
has been significant progress in the field, marked by the rapid development and widespread
availability of generative Al (GenAl). While there is growing interest in exploring GenAl for PV

i Medicine
In this report, we use medicines for products that are used to treat, prevent, or diagnose medical conditions
as well as some that restore, correct or modify how the body works. In this report, these are products that fall
within the scope of national and regional medicines regulatory authorities’ activities. Vaccines and medicine-device
combinations fall within our description of medicines too. Other terms used interchangeably with medicines include
drugs, medications, and medicinal products.

Adopted from: CIOMS Working Group XI




Preface

applications, we recognise the need to focus on its appropriate use, which brings specific
challenges in highly regulated domains such as PV, and we look to distinguish where possible
and beneficial from general issues of Al use. Consequently, this report intends to offer a
general framework of principles and good practices for developing and using Al in PV. Rather
than offering technical guidance, the aim is to ensure continued relevance as Al capabilities
advance. The report focuses on applications that are specific or particularly applicable to
PV rather than considerations for the more general use of Al

This report aims to provide guidance to individuals and organisations interested in developing
solutions for the use of Al in PV, including regulators, industry, academic researchers,
clinicians, patients, ethicists, technology vendors, and global organisations.

Preface — References

1 Liyanage PH, Madhushika MT, Liyanage PLGC. Effectiveness of mobile applications in enhancing adverse drug
reaction reporting: A systematic review. BMC Digit Health, 2025;3:15. https://doi.org/10.1186/s44247-025-
00153-9 (Journal full text)

2 Desai RJ, Matheny ME, Johnson K, Marsolo K, et al. (2021). Broadening the reach of the FDA Sentinel system:
A roadmap for integrating electronic health record data in a causal analysis framework. NPJ Digit Med. 2021;4:170.
https://doi.org/10.1038/s41746-021-00542-0 (Journal full text)
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EXECUTIVE SUMMARY

The Council for International Organizations of Medical Sciences (CIOMS) report on artificial
intelligence (Al) in pharmacovigilance (PV) addresses a rapidly emerging cross-disciplinary field
that is at the intersection of PV, computer science, mathematics, regulation, law, medicine,
human rights, psychology and social science. Consequently, just as with medicinal products,
it is important to establish the approved indications, posology, side effects, and warnings and
precautions for use of Al in PV. The latter must be clearly defined and understood by many
people from different backgrounds to propel research and practical implementation in an
effective, safe and responsible manner. The diverse pool includes professionals, researchers,
and decision makers working in PV in biopharmaceutical industry, regulatory authorities,
and academia. It also includes software vendors that develop Al solutions PV, including signal
management and all aspects of Individual Case Safety Report (ICSR) processing. This report
provides the requisite terminology and conceptual understanding to actively engage in this
space, either by participating in the applied scientific research and public discourse, or by
performing evaluations and making decisions at one's organisation.

Perhaps more than other CIOMS report topics, the potential hazards of Al in PV and related
points are major elements of our key results because rapidly evolving, advanced and often
opaque technologies may generate a rush of excited promotion and initial over-estimation
of utility, observed in so called technology “hype cycles”, that does not correspond with
the practical realities. There is a corresponding safety net of core guiding principles for
human protection elaborated by multiple organisations, through which Al in PV must grow.
This report provides a set of guiding principles and corresponding organisations that have
elaborated each one. These principles form the bulk of the report: a risk-based approach,
human oversight, validity and robustness, transparency, data privacy, fairness and equity,
and governance and accountability. Key points to consider for these guiding principles are
elaborated throughout the report and summarised concisely below.

Similar to prior CIOMS reports, this one benefits from a consensus position from multiple
stakeholders, including those based in regulatory agencies, academia, and industry.
The Working Group (WG) recognised that the field of Al is progressing so rapidly that a
prescriptive document would likely be quickly outdated. Instead, the WG decided to focus
on a set of common principles that were expected to be useful for years to come for PV
professionals. PV is but one of a myriad of Al applications that are now transforming many
aspects of modern life. As such, this report benefits as well from the increasing interest in
Al by national governments, several of which have issued legislation and guidances not only
on Al in drug development but also more broadly on the general use of Al.

Risk-based approach. Integrating Al into PV processes needs to take into account the
potential inaccuracies and variability of Al systems, and corresponding impacts on the safety
and well-being of individuals and society. The level of risk, and corresponding intensity of
oversight, depends on two considerations: 1. whether the decision is a high stakes decision,
i.e. are the outputs used to make a critical decision(s) for which an error has substantial
adverse consequences to humans; and 2. whether the Al solution is intended to be used
in unchecked, stand-alone mode versus with a human-computer interaction. A sound risk-
based approach, in which the human oversight in the development and deployment of Al is
commensurate with these risks, enables organisations to make the most of Al capabilities
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while ensuring that neither patient safety nor PV stakeholders are adversely affected. For a
given PV application, the risk-based approach applies to the human oversight modalities,
the validity and robustness strategy, the level of transparency, and the efforts to uphold
fairness and equity, and data privacy. The risk assessment should consider the Al system itself,
the context of use, and the potential impact and likelihood of risks materialising. A risk-based
approach should be reviewed and documented at regular intervals and adapted if needed.

Human oversight. Human oversight supports performance optimisation of Al in PV and
increases trustworthiness and accountability. The extent and nature of human oversight for
an Al solution should be risk-based, incorporating quality assurance principles. The human
oversight might be “human-in-the-loop” where the decision is the end result of a human-machine
interaction, while in “human-on-the-loop”, the machine autonomously makes a decision or
otherwise returns a result that is checked by a human. Human oversight is necessary to
define fit-for-purpose levels of performance for the intended task (i.e. validity). It involves
predefining acceptable performance benchmarks, selecting appropriate data for model
development and testing/validation in a realistic setting, an ongoing quality assessment
process and retraining or dynamic/online learning of the model as needed. Increased use
of automation and Al in PV will transform traditional roles and competencies, requiring
appropriate change management and training strategies.

Validity & Robustness. PV stakeholders must learn to continually and critically appraise
proposed Al solutions. Performance evaluation must demonstrate acceptable and robust results
for intended use under realistic conditions. Such an evaluation should be both qualitative and
quantitative, a cross-disciplinary exercise, and span a diverse range of relevant examples.
Evaluations should use a sufficient representation of relevant data types (e.g. data sources
such as spontaneous reports, clinical trials, and literature), reporter/patient characteristics,
and a variety of medicines, vaccines, and AEs, to mitigate the chance of, and detect, biases,
promote adequate and generalisable performance across the intended deployment domain,
assess usability, and identify circumstances associated with underperformance. As many
applications in PV focus on recognition of rare events or patterns (e.g. safety signals and
duplicates), enrichment strategies to obtain representative test sets with high enough
prevalence of the outcome may be required. Special care should be taken to attempt to
ensure that performance evaluation results generalise to real-world settings.

Transparency. Declaring when and how Al solutions are used is critical for building trust among
stakeholders. The nature of Al solutions deployed for core PV tasks, with a corresponding
value proposition, should be communicated, including model development and architectures,
expected inputs and outputs, and the nature of human-computer interaction. To fully
characterise an Al solution’s effectiveness and limitations, performance evaluation results
should describe the scope and nature of the test set(s) used including reference standards
and sampling strategies. Performance metrics should be relevant for the intended tasks,
compared with relevant benchmarks, and complemented by qualitative review of representative
examples of correct and incorrect output. Explainability is an important concept relevant
to those models whose internal decision pathways are so intricate and non-linear that they
remain inscrutable even to technically literate persons — so called black boxes of the first
kind. Explainable Al are a set of techniques that return plausible hypotheses about these
pathways — roughly how the black box arrived at its outputs. To be able to do this can be
advantageous to model building/trouble shooting, building trust, establishing auditability and
accountability, including providing a basis for a human to challenge an Al result that may
be adversely impacting them, regulatory compliance and scientific hypothesis generation.



If possible, a description of the general principles and logic by which an Al model functions
and arrives at its outcomes / predictions should be shared, or the lack of such explainability
should be acknowledged and its implications discussed. However, explainable Al methods
have limitations, and they only provide plausible hypotheses, but are no guarantee that the
Al in fact used the hypothesized decision pathways.

Data Privacy. The ethical framework to evaluate the use of Al in PV is embedded within the
standard principles for research activities involving human subjects. A crucial principle for the
use of Al in routine PV is the sanctity of data privacy. With the increasing power of both the
hardware and software that power Al, there is a vast potential to build large, linked databases,
and the potential inherent in Large Language Models (LLMs) for patient re-identification, which
may be addressed by pre-deployment data-protection-impact-assessments. These may pose
an ongoing challenge to the traditional safeguards that protect data privacy. In this context,
there are multiple opportunities to reveal highly sensitive personal and health information to a
broad, cross-disciplinary range of stakeholders throughout the Al development and deployment
workflow. Consequently, countries have been enacting legislation and guidances intended
to protect these data. PV professionals and other relevant stakeholders, such as software
vendors, should recognise that existing procedures used to assure regulatory compliance may
need to be re-evaluated due to the heightened risks of GenAl to compromise data privacy.

Fairness & Equity. Key regulatory and ethical imperatives for the fair and equitable use
of Al in PV include: supporting fairness and equity, avoiding propagating or amplifying
harmful explicit biases, discrimination and inaccurate results during model development and
deployment, and underserving certain subpopulations, which may even permeate the initial
decision of whether or not to implement an Al solution. Equity may be advanced by taking
measures to assure that Al in PV returns outputs that are relevant to populations anticipated
to have exposure to the specific medicinal product being evaluated. Screening, identifying
and excising explicit or potential bias when possible is key to mitigating risk, determining Al
applicability and limitations, and defining acceptable performance. Training and performance
evaluation of reference data sets should be scrutinised for adequate representation and
performance evaluated in relevant subgroups when possible. Inadequate reference data is
often the cause of inadequate fairness and equity.

Governance & Accountability. Robust governance and clear accountability are crucial
for the success of Al initiatives. These principles help ensure that Al solutions are used
safely, responsibly and ethically, and in compliance with all applicable legal and regulatory
mandates while fostering trust and transparency among stakeholders. Clearly defined roles
and responsibilities are crucial to enable all stakeholders to understand their accountability
and obligations in order to effectively oversee Al solutions.

As Al technology evolves, governance and accountability frameworks will need to be adapted.
New risks and challenges will emerge, requiring updated principles and practices. Continuous
review and adaptation are essential for staying ahead of these changes. This includes the
adaptation and refinement of a proposed governance framework grid (see Chapter 9 on
Governance & Accountability) of the aforementioned guiding principles for practical use.

Future considerations for development and deployment of artificial intelligence
in pharmacovigilance. Increasing deployment of Al in PV is expected to prioritise and
accommodate rapid data collection, assessment and reporting for signal detection in real
or quasi real time. This may also be accompanied by a relative shift from warm-start to cold-
start prediction scenarios (i.e. post-approval to early-stage drug development). This could
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fundamentally change the way we take advantage of these technological advances, for example,
streamlining processes and causing changes in the wider healthcare environment and beyond,
including patient privacy. We also expect to see increasing deployment of Al in PV in the
clinic, where it could support primary, secondary and tertiary prevention of adverse drug
reactions. The extent to which humans remain in- or on-the-loop will be determined by the
nature of the task (e.g. routinised tasks versus those requiring expert clinical and scientific
judgement), consistent with the elaborated risk-based approach, but it is possible that some
Al-based expert systems could eventually develop refined medical and scientific judgement.

It is critical that the guiding principles outlined in this report remain as core considerations
and responsibly applied in specific context of use. They will need to evolve and adapt with
advancements and application of Al in PV and medicine in general, which requires flexibility
and full understanding of the process, data, and capabilities and limitations of Al. This is to
ensure Al use in PV remains unbiased, transparent, and secure to prevent misuse or accidental
harm. The appropriate human oversight, including regulatory and ethical safeguards, will be
as crucial as the technological advancements being applied.



CHAPTER 1.
INTRODUCTION

An Al system is a machine-based system that, for explicit or implicit objectives, infers, from the
input it receives, how to generate outputs such as predictions, content, recommendations,
or decisions that can influence physical or virtual environments.1 Different Al systems vary
in their levels of autonomy and adaptiveness after deployment. The definition encompasses
systems ranging from those explicitly programmed to perform tasks based on human
expertise, to machine learning (ML) based methods, including more complex approaches
such as deep neural networks. We acknowledge however that organisations that use an Al
system may apply narrower definitions in their own processes.

In the context of PV, the use of Al systems and activities is aimed at enhancing drug safety
monitoring, patient safety and regulatory compliance with the overall objective to inform
decisions to optimise treatment benefit-risk. PV is practiced not only at pharmaceutical
companies, health authorities, drug monitoring centres and academia, but also in the clinic,
and Al is finding applications to PV in all these settings.?2

An Al solution should be designed to address specific objectives within PV. The overall Al
solution could be developed with one or many Al systems. An Al system encompasses
the model(s) and components necessary for operation, including user interfaces and data
processing pipelines. At the core of these systems are Al models. These models utilise
parameters to learn patterns or relationships within data, enabling the systems to adapt and
improve model performance over time or support knowledge retrieval systems.

Simpler Al systems, such as statistical methods for signal detection, have been widely
utilised in PV for decades.3 However, the past decade(s) have seen drastic improvements in
Al capabilities, particularly in image analysis and natural language processing (NLP). These
advancements have resulted in a significant increase in their use. In addition, continual
advances in computing power and model architectures have enabled the development and
aggregation of large electronic databases with potential for linkage. These have enabled the
field of Al to be applied to an increasing number of disciplines, including the life sciences.4
Within the life sciences, Al is being applied to a growing number of areas, such as, medical
imaging and diagnostics, drug discovery and development, genomics, precision medicine,
public health, and healthcare delivery.5

Partly due to advances in Al, the pharmaceutical field is poised for rapid transformation
across clinical, regulatory and PV practices, aiming to streamline end-to-end processes to
accelerate product development and market delivery. Similarly, there is a growing emphasis
focusing on enhancing clinical and post-marketing safety and risk management activities to
enable proactive identification (or even prediction) of safety signals and benefit-risk evaluation.
In the clinic, Al is being tested or deployed for early diagnosis (and thus secondary and
tertiary prevention) of various adverse drug reactions. Examples include early detection of
hydroxychloroquine retinopathy,6 digoxin toxicity,” and drug-induced movement disorders
in Parkinsons patients.8

These advancements leverage massive integrated datasets and inductive logic, enabling
Al models to make plausible inferences by utilising accumulated data, rather than relying

(®)
X
=
U
o |
m
e
L
E)
=
S
o
=
(@]
=
)
ju




=
=2
=1

13}

=
©

o
=}
=
-
o
Ll
o
o
<C
=
(&)

solely on explicit rules or human intervention. This approach facilitates the development of
Al systems that provide new, improved, or complementary solutions. A critical enabler for
Al success within PV will be the ability to link and analyse large volumes of heterogeneous
data of varying quality from diverse data sources, such as electronic health records (EHRs),
claims databases, registries, Internet of Things (loTs), and connected devices. The ability to
leverage health data can lead to potentially faster development of new treatments, improved
patient outcomes, and reduced healthcare costs, including the potential for unlocking novel,
useful, and actionable insights that might not have been identified otherwise. Linkage to
external datasets may entail additional privacy implications and risks. To mitigate these
risks, privacy-preserving record linkage approaches can be employed, enabling secure
and ethical data integration while maintaining patient confidentiality.2.10 Hence, there is
an acute need to effectively communicate the key importance of data access to support
patient safety outcomes.

Incorporating Al into PV necessitates a thorough assessment of its potential benefits and
risks, helping stakeholders understand its implications for existing practices. Given the
rapid pace of change, this document does not prescribe specific uses for Al in PV but rather
establishes and promotes guiding principles for utilising Al including ML.

The start of systematic safety monitoring predated the advent of the internet and widespread
electronic reporting capabilities. As such, it was a largely manual process that relied upon
computing for purposes such as summarising data.

Individual case safety reports (ICSRs) are a key component of PV and remain a cornerstone
of post-market safety surveillance as they provide crucial safety information for an approved
pharmaceutical product, which is important to mitigate patient harm when assessed within
a broader signal management system.

The processing of ICSRs involves several steps: collection, triage, data entry, quality review,
medical assessment, with further dissemination to other safety databases (e.g. regulatory
authorities). As the number of product approvals and the patient exposure grow, so does the
number of reported AEs. The increased volume of ICSRs, coupled with stringent regulations
impacting PV, creates significant challenges in ICSR processing and compliance.

Once a signal is detected as a result of individual or aggregate analysis of AE reports, it needs
to be systematically investigated through sequential steps, which include signal triage,
validation, and, based on scientific assessment, formal evaluation using independent data
sets, such as hypothesis-testing research studies.1! Such investigation must be conducted
in an integrated, holistic fashion with all available scientific evidence and logic, offering wider
opportunities for use of Al for data insights (see Figure 1).

Traditional PV methods for analysis of AE reports include:12.11

Review of ICSRs or case series in a PV database or in published medical or scientific
literature; and

Aggregate analyses of case reports using absolute case counts, simple reporting
rates, proportions or estimated exposure-adjusted reporting rates.

While ICSRs are fundamental to PV, other data streams are also considered throughout
the PV lifecycle. These streams may be directly linked or conceptually related and include
pharmacokinetic / pharmacodynamic (PK-PD) data, real-world data (RWD), literature,
and information from clinical trials etc.



Once safety concerns (including important identified risks or important potential risks) and
missing information are identified, risk management activities are put in place to communicate
them appropriately to a wide range of stakeholders. This is achieved through documents such
as aggregate reports, risk management plans, labelling information and Direct Healthcare
Professional communications (DHPCs).
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The COVID-19 pandemic has further emphasised the need for advanced methods in PV,
as it has led to a significant rise in safety reports (see Figure 2 and Figure 3).13,14 As public
awareness and expectations regarding drug safety continue to rise, there is a greater demand
for robust PV systems that can effectively identify and mitigate potential risks associated

with medicines.

Figure 2: Growth over time of VigiBase, the World Health Organization
global database of adverse event reports for medicines
and vaccines

Source: VigiBase accessed April 2025. Figure reproduced with permission.
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Figure 3: Growth over time of the FDA Adverse Event Reporting System
(FAERS) database

Source: Constructed using FDA FAERS database.15
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Number of reports received annually in the FDA FAERS database (accessed October 2025) stratified expedited,
non-expedited and reports submitted directly to FDA. This may include multiple versions of the same cases e.g. in
the form of follow-up reports.

The challenges of establishing and maintaining progressively more complex PV systems in
a globally diverse and evolving regulatory environment are increasing. There is a need to
rethink traditional PV strategies based on existing pressures on the one hand (e.g. managing
increasing volumes and increasing regulatory complexity) and increasing data sources on
the other.

Technology solutions are already vital for the evolution of PV. While this notion of technology
as a transformative enabler spans across all areas of product development, it is evident
that applying innovative automation tools and processes to PV is no longer an option but
an essential need.

Rapid evolution of artificial intelligence

Traditional Al methods (e.g. K-means clustering, decision trees, support vector machines)
have been tailored for specific tasks, primarily utilising supervised learning techniques.
In contrast, deep neural networks such as BERT! have played a significant role in NLP, where
they are pre-trained on large datasets and subsequently fine-tuned for specific applications
delivering predictable outputs.

i BERT: Bidirectional Encoder Representations from Transformers
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CHAPTER 1.

However, the landscape has been evolving beyond this framework thanks to emerging
technologies like GenAl, knowledge graphs and ontologies. GenAl models are trained on
expansive and varied text corpuses, often incorporating phases of human reinforcement
learning. These models can perform specific tasks using sophisticated prompts, adopting
zero-shot or few-shot ML learning techniques.

1.1. Scope

This document aims to guide those working in PV in addition to organisations developing Al
solutions for the PV domain, such as regulators, medicinal products industry professionals,
software vendors, international and national PV organisations, researchers, and health
care professionals.

This report proposes a broad framework of principles and best practices for integrating
and implementing Al within PV, not technical guidance. Recognising the rapid evolution and
application of Al technology, the CIOMS Working Group XIV developed this document to guide
the development and integration of Al systems into PV activities.

Our scope focuses on all aspects, direct and indirect, of the optimal collection, organisation,
analysis, and communication of ICSRs from any source, including RWD, medical literature,
randomised controlled trials (RCTs), and social media. Additionally, it includes productivity
enhancers closely linked to PV, such as systems that improve querying of safety databases!6
or capabilities that enable faster, more effective, or consistent data entry into a safety
database which also contributes to better safety surveillance.l”

The scope deliberately excludes broader healthcare data applications outside the direct
purview of PV, such as pharmacoepidemiology and other real-world evidence study designs
and conduct that fall outside the realm of ICSRs. Similarly, the general use of Al as a
productivity enhancer, if not directly connected to PV activities (e.g. for email support),
is excluded, as considerations may differ.

The scope has been intentionally limited to provide a practical guidance organised as principles
and their applications of Al in PV, rather than detailed guidance to ensure longevity. As Al
is progressing extremely rapidly, future opportunities and considerations are described in
a later chapter.
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CHAPTER 2.
LANDSCAPE ANALYSIS

2.1. Use of artificial intelligence in
pharmacovigilance to date

Al may directly or indirectly impact all aspects of PV (see Figure 1: Representative signal
management). In this chapter, we discuss systems that incorporate elements of Al and have
been developed or deployed for a variety of tasks across PV, focusing on those that have
been implemented specifically for PV or have attributes or features especially prominent in
PV applications and processes. For example, Al systems for general translation tasks are
out of scope, but PV specific translations, e.g. of AE reports or reporter source documents
(e.g. original case reports, transcriptions of a call), are in scope. Additionally, research on Al
methods to identify covariates for inclusion in propensity score models for epidemiological
studies are out of scope. Rather than seeking to provide an exhaustive enumeration, the aim
here is to illustrate the range and variety of current applications. Additional examples can
be found in recent review articles.! The reader is also referred to the many perspectives
and commentaries that discuss the use of Al in PV2,3,4,5, and the cautionary notes that have
been provided.6

2.1.1. Adverse event capture

Al systems have been proposed and evaluated for a variety of tasks related to NLP of social
media content to identify references to (personal experiences of) medicine use and AEs
that may provide the basis for AE reports. These tasks include identifying relevant posts,7.8
identifying relevant parts of such posts,? normalising descriptions of AEs or medicinal
products within such posts to standardised terminologies like the Medical Dictionary for
Regulatory Activities (MedDRA) or the Anatomical Therapeutic Chemical (ATC) classification
system code,10 and classifying the relationship between AEs and drugs mentioned in the
same posts.11

Similarly, Al methods have been developed to support screening the scientific literature for
AEs that may be captured on AE reports.12.13

2.1.2. Individual Case Safety Report Processing

An area of ICSR processing where Al systems have been in routine use by some organisations
since at least the 2010’s is duplicate detection, which relates to the identification of multiple
unlinked records describing the same AE in a particular patient.14 Duplicate detection methods
based on ML and probabilistic record linkage have been implemented for VigiBase,15 US Food
and Drug Administration Adverse Event Reporting System (FAERS),16 and EudraVigilance.17
The use of NLP to improve duplicate detection by extracting and incorporating information
from free text has also been explored.16 Rule-based methods are more widely used and
easier to implement but do not perform as well.14.18
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Another area where Al has been used to support ICSR processing is in the encoding of
information on AEs19.20 or medicinal products2l on AE reports in standard terminologies
based on verbatim fields and/or free-flowing case narratives. NLP has also been applied to
extract relevant information from case narratives and map it to structured fields22,23,24,25,26,27
and for ICSR translation.28

Several organisations who process large numbers of case reports have also automated
repetitive, labour-intensive tasks using rule-based so-called Robotic Process Automation (RPA)
technologies.29 These operate on the user interface of other computer systems mimicking
actions that humans otherwise would take.30 They may for example automate duplicate
checking and importing of cases, as described by TransCelerate.3!

Other applications of Al systems during ICSR processing include methods that have been
developed to create narratives from structured data,?9 help support triage of incoming
reports for human review,32.33 help support individual case causality assessment,34 and
automate redaction of person names in case narratives.33

2.1.3. Signal detection and analysis

The earliest examples of real-world use of (simple, narrow, and rule-based) Al in PV are
from the late 1990s. At this point, disproportionality analysis, first conceptualised in the
1970s,36 began to be implemented as part of rule-based triage algorithms to help direct
the attention of PV specialists in their analysis of large national and international collections
of individual case reports.37.38,39,40 Since then, various incremental improvements have
been introduced and evaluated including automated adjustment for confounding through e.g.
regression,41.42 or propensity scores,43 extensions to drug-drug interactions,44,45,46,47,48,49
and other possible risk factors for adverse reactions.50 Methods to detect AEs associated
with the production process or with substandard or counterfeit medicines have also been
explored.51,52,53 |n addition, there have been efforts to develop predictive models for
statistical signal detection that account for other aspects of a case series, such as its
geographic spread and the quality and content of individual reports,54 the time-to-onset of
the reported reactions,5 or a combination of e.g. Naranjo scores and the proportions of
reports on a drug-AE combination coming from healthcare professionals (HCPs) and marketing
authorisation holders (MAHs), respectively.56

NLP has been applied to mine regulatory information,57 scientific literature, and clinical
notes58,59,60,61 for information on already known/unknown and potentially serious adverse
effects. This may support and streamline decision making, especially during early signal
assessment and prioritisation.

Some published Al-based signal detection exercises provide tantalising glimpses of how elegant
Al solutions may uncover truly novel AEs.62 At the same time, caution is warranted in that
highly technical and elegant methods may be associated with overly optimistic interpretations
of, and corresponding messaging about, the results, which may disseminate widely.63

Several organisations have developed predictive models for ICSR prioritisation to assess
causal associations between drugs and AEs and/or inform a regulatory action.64.65,33,66,67
These can be used to prioritise reports for human review during signal assessment and/or
case processing. Semantic search has been developed for case narratives to support signal
detection and assessment68.69 and there have been efforts to provide ML-based decision
support for signal validation70 and to automatically visualise relevant information on case



reports to facilitate human review during signal assessment.”! ML has been used to help
estimate the proportion of patients with a genotype associated with drug toxicity based on
the phenotypical manifestations reported in ICSRs.72

Applications of unsupervised learning have been developed to support signal detection and
analysis, especially seeking to bring together reports describing similar or related AEs.
These include network analyses of AEs (and to a lesser extent drugs),”3:74.75,76,77 cluster
analysis of AE reports,’8.79and data-driven derivations of semantic representations of AEs
and drugs.80.81

Datasets with information about drug side effects and indications such as DrugBank82 and
SIDER,83 as well as those with information on pharmacology and chemical structures such
as Bio2RDF,84 have been leveraged to enhance PV signal detection and analysis,85.86.87
or derive knowledge graphs that can serve as downstream inputs for Al-based predictive
signal detection.88,90 There have also been Al applications that help retrieve scientific papers
relevant to the analysis of possible adverse effects.

2.1.4. Early applications of generative Al in pharmacovigilance

Early applications of generative Large Language Models (LLMs) in PV have started to be
explored. They include also applications where generative LLMs are prompted or post-processed
to more restricted outputs, as a basis for e.g. classification or named entity recognition.
Examples to date include use of generative LLMs to simplify the patient communication
from a regulatory authority,89 summarisation for drug labelling documents®0 and of case
narratives,9! screening scientific literature and social media,!3.92 search of drug safety
documentation,® Q&A for drug labelling,93 PV context-aware generation of Structured Query
Language (SQL) code,%4 and drafting follow-up letters to reporters.95

2.1.5. Examples of deployed Al solutions

Much of the research and development of Al solutions for PV to date has been experimental,
with either no real-world deployment yet or only limited experimental use, for example in the
form of pilot studies. However, Table 1 presents examples of Al solutions that have been
adopted for routine use in PV by various PV organisations and are described in the public
domain. The deployment of Al solutions by pharmaceutical companies may be largely based
on software vendor implementations, which are not described in the public domain.96 Similarly,
several Al solutions deployed by the European Medicines Agency (EMA) are described in
public domain,®7 but not yet in separate scientific publications. See also the use cases

presented in Appendix 3.
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Table 1:

Examples of deployed artificial intelligence solutions in

pharmacovigilance described in the public domain

Source: CIOMS XIV working group

Al solution Pharmacovigilance context / database

Automated coding of medicinal
products

VigiBase?!

Duplicate detection

FAERS, 98 VigiBasel®

Automated triages of individual
case reports

Swedish Medical Products Agency34, pharmaceutical
companies9?

Automated triages for
quantitative signal detection

Databases of various regulatory authorities,
international organisations, and pharmaceutical
companies

Predictive models for quantitative
signal detection

VigiBase, 26,100 Netherlands pharmacovigilance centre
Larebl01

Adverse event cluster analysis for
signal detection and assessment

VigiBase80,102

Literature surveillance for safety
data

EudraVigilancel03 Netherlands pharmacovigilance
centre Lareb104

2.2. Regulatory considerations

Since 2017, countries around the world have been developing national Al strategies in order
to adapt to technological advancements and their impact on society and the economy.105
Countries have developed different regulatory frameworks and guiding principles to ensure the
ethical use and trustworthiness of Al systems, and legislations of Al are being implemented
(i.e. European Artificial Intelligence Act [EU Al Act]106, Artificial Intelligence and Data Act
[AIDA]).107,111 |n addition, there have been published reflection and discussion papers
on the use of Al in medicinal products by the EMA and the United States Food and Drug
Administration (FDA), as well as a draft guidance on Al use to support regulatory decision
making for drug products by the US FDA.

2.2.1. Guiding Principles for Al in Pharmacovigilance

There are numerous published guiding principles for safe and responsible use of Al by
governments, regulatory bodies and international organisations such as the WHO and The
Organisation for Economic Co-operation and Development (OECD). Select publications defining
guiding principles and recommended best practices for safe and responsible Al use in regulated
fields were reviewed by the CIOMS Working Group XIV. Although these publications were not
developed specifically for PV, the described guiding principles for Al were determined to be
applicable to the field of PV. It should be acknowledged that some discretion was used by
the CIOMS Working Group XIV to establish the guiding principles for PV from these various
publications, as some of the principles were described in conjunction with other principles.
Of note, the US reference used by the CIOMS Working Group XIV has since been archived
and no longer represent the current US policy; however, this reference has been retained as



it was used to inform the development of guiding principles for this report. For more current
Al policies from other countries, please refer to the Artificial Intelligence Policy Tracker.108
Table 2 provides an overall comparison of the guiding Al principles from select governmental
institutions and international organisations. A non-exhaustive description of the Al principles
is presented in Appendix 2:

Table 2: Comparison of CIOMS Working Group XIV guiding principles for artificial
intelligence across regional and country government institutions,
and international organisations

Source: CIOMS Working Group XIV

Examples of regional - and country government institutions’, and
international organisations’ principles

Principle EUL09110 Aystralialll Canadall3 Singaporell2 UKI3 US!14 PAHO!S WHOL6 OECD!7
Human v v v v v v v v
Oversight

Validity & v v v v v v v
Robustness

Data v v v v v

Privacy

Transparency | v/ 4 v v v v v v
Accountability | v v v v v v v v v
Societal v v v v v v
well-being

Environmental | v/ v v v
Well-being

Fairness & v v v v v v v v v
Equity

Explainability | v/ v v v v v v
Safety v v v v v v v
Governance | v v v

2.2.2. The EMA Reflection Paper on the Use of Artificial
Intelligence (Al) in the Medicinal Product Lifecycle

On September 9, 2024, the EMA finalised its Reflection paper on the use of Al in the
medicinal product lifecycle.118 The reflection paper addresses the use of Al/ML in the safe
and effective development, manufacturing and use of medicines.

The EMA advocates a risk-based approach for the development, deployment and monitoring
of Al and ML tools throughout the system lifecycle. The paper uses the terms ‘high patient
risk’ for systems affecting patient safety and ‘high regulatory impact’ for cases with a
substantial impact on regulatory decision making. It is expected that applicants/ MAHs
and developers of Al and ML systems will perform a regulatory impact and risk analysis.
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The level of scrutiny of the Al and ML systems will be dependent on the assessment of risk
level and regulatory impact.

The paper provides technical and regulatory considerations on the use of Al and ML
throughout the lifecycle of medicinal products, from drug discovery and development
to post-authorisation settings. Specifically for PV, the paper notes that Al/ML tools can
effectively support activities such as AE report management and signal detection, in line
with applicable Good Pharmacovigilance Practices (GVP) requirements. Applications within PV
may allow a more flexible approach to Al/ML modelling and deployment than other domains,
for example, to improve severity scoring of AE reports and signal detection. It is, however,
the responsibility of the MAH to validate, monitor and document model performance and
include Al/ML operations in the PV system, to mitigate risks related to all algorithms and
models used.

Generally, the applicant or MAH is responsible for ensuring that all elements of the Al and
ML applications (i.e. algorithms, models, datasets, and data processing pipelines) are fit
for purpose and comply with Good [x] Practices (GxP) standards and current EMA scientific
guidelines. Member State data protection authorities are responsible for the supervision and
monitoring of data protection compliance of Al systems. Applicants or MAHs and developers
are recommended to engage with EMA on experimental technology, especially for Al and ML
models that may have a high impact on the regulatory decision making.118

The EMA is planning to develop further guidance on the use of Al in the medicines lifecycle,
including in PV.118

2.2.3. US FDA Discussion Paper on Using Artificial Intelligence &
Machine Learning in the Development of Drug & Biological
Products

In May 2023, the U.S. Food and Drug Administration (FDA) published a discussion paper
on “Using Artificial Intelligence & Machine Learning in the Development of Drug & Biological
Products”.119 The US FDA acknowledges the increased use of Al/ML in the lifecycle of
drug development with novel approaches in data mining, analysing large multi-omics, PK/
PD modelling, real-world data, data collection from wearable devices and other datasets
(e.g. in vitro and in vivo studies, mechanistic studies, and multi-organ chip systems). In post-
marketing safety surveillance, the US FDA sees the potential to: i) automate the processing
and prioritisation of ICSR using Al/ML, due to the increasing volume of reports and complexity
of data sources; ii) classify ICSRs on the likelihood of causal relationship between the drug
and AE; iii) determine the seriousness of the outcome of ICSRs; and iv) automate aggregate
reports for multiple AEs for a particular product.

2.2.4. US FDA Draft Guidance on Considerations for the
Use of Artificial Intelligence to Support Regulatory
Decision-Making for Drug and Biological Products
The US FDA published a draft guidance titled “Considerations for the Use of Artificial
Intelligence to Support Regulatory Decision-Making for Drug and Biological Products

Guidance for Industry and Other Interested Parties” in January 2025120, |t elaborates a risk-
based credibility assessment framework for Al. The scope of the document focuses on the



support of regulatory decision-making pertaining to the safety, effectiveness, or quality for
drugs. Out of scope are drug discovery or scenarios in which Al is deployed for operational
efficiencies. It considers Al broadly, i.e. not limited to specific subsets of Al such as ML.
There are three major segments of the draft guidance:

1. Establishing a risk-based credibility assessment framework (see also Chapter on Risk-
based approach);

2. Lifecycle credibility maintenance;

3. Options for sponsors for engaging with the agency to discuss Al model development.

The risk-based credibility assessment framework has seven steps as below.

1. Define the question to be addressed by an Al model.

2. Define the “context of use (COU)" as “....the specific role and scope of the Al model used
to address a question of interest”. Importantly, this includes whether the questions being
answered, and any ensuing classifications or decisions, are based solely on the Al outputs
versus the Al being used in conjunction with other information (i.e. “model influence”).
This is important because it helps define the associated risk in the subsequent step.

3. Define model risk. This is determined by model influence as defined in the COU and
decision consequence - i.e. the consequences of an incorrect decision. The risk is
highest when the Al model is operating in a stand-alone capacity and incorrect decisions
present a major hazard. The required level of oversight throughout the development and
production cycle is positively correlated with the risk.

4. Develop a plan to establish Al model credibility within the COU.

Execution of the plan.

6. Document the results of the credibility assessment plan and discuss deviations from
the plan.

7. Determine the Adequacy of the Al Model for the COU.121

o1

2.2.5. US FDA Emerging Drug Safety Technology Program

The US FDA established the Emerging Drug Safety Technology Program (EDSTP) in June 2024
to engage with industry stakeholders on Al and other emerging novel technologies used in
PV and the lifecycle of the drug product. The three goals of the EDSTP include discussion
between industry and US FDA, knowledge dissemination of emerging Al/ML models or other
emerging novel technologies, and to inform potential regulatory or policy development within
the context of PV.122

2.2.6. Guidance on use of Large Language Models

Since the release of ChatGPT (Generative Pre-trained Transformer) on November 30, 2022,
there has been significant work in exploring how GenAl could be adapted to a variety of tasks
(such as text and image generation, coding, brainstorming, and research) for productivity
gains. Given the potential use and broad applicability of GenAl, regulatory agencies and
organisations have developed high level guides and best practices on the safe and responsible
use of GenAl by their own staff and broader stakeholder groups, respectively, which aligns
with established guiding principles for Al:
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Guiding principles on the use of Large Language Models (LLMs) in regulatory science
and for medicines regulatory activities (EMA123);

Guide on the use of generative Al (Canadal24);
Initial policy considerations for generative artificial intelligence (OECD125);

WHO Ethics and governance of artificial intelligence for health: Guidance on large
multi-modal models. (WHO126),

2.2.7. Guidelines for safe Artificial Intelligence

Other related regulatory and international organisation (e.g. WHO and OECD) published
guidelines for safe Al:

Regulatory considerations on artificial intelligence for health, WHO 2023;127

Ethics Guidelines for Trustworthy Al, European Commission 2019;128
Recommendation of the Council on Artificial Intelligence, OECD 2019, amended 2023;129
Good Machine Learning Practice for Medical Device Development: Guiding Principles,
US FDA, Health Canada, MHRA 2021130

Transparency for Machine Learning-Enabled Medical Devices: Guiding Principles;131

ISO/IEC 23894:2023 Information technology - Artificial Intelligence — Guidance on
risk management.132
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CHAPTER 3.
RISK-BASED APPROACH

Principle

A risk-based approach acknowledges the potential hazards that Al systems can pose
and recognises that different use cases present varying types and levels of risk in the
execution of core PV tasks. This necessitates a risk assessment that identifies, prioritises,
and manages risks that could negatively affect a PV system’s behaviour and results, taking
into consideration process controls. A risk is characterised by both the anticipated impact
and the likelihood of negative outcomes.1

This approach also supports procedures to identify and reduce errors and biases in a way
that is proportionate to their risk. It influences the implementation strategies of Al solutions,
which should generally be commensurate with the identified risk.

Key messages

Integrating Al into PV processes needs to take into account that the performance of
both Al algorithms, and humans, is imperfect.

The risks potentially associated with the use of Al in PV may affect patient safety,
the trust and engagement of PV users, the efficiency of PV processes as well as
compliance with regulatory standards and ethical principles.

By focusing efforts and resources where they most matter, a sound risk-based
approach enables organisations to make the most of Al capabilities while ensuring
that neither patient safety nor PV stakeholders are adversely affected.

The risk-based approach applies to the human oversight modalities, the validity and
robustness strategy, the level of transparency, and the efforts to uphold fairness
and equity, and data privacy.

The risk assessment should consider the Al system itself, the context of use, and the
potential impact and likelihood of risks materialising.

Arisk-based approach should be reviewed and adapted as needed at regular intervals
and whenever changes in the system’s performance dictate so.

3.1. Introduction

3.1.1. Regulatory considerations

Regardless of the integration of Al elements, PV systems are expected to comply with
existing regulations and GVP.2.3 In accordance with GVP, a wide range of PV processes
are considered critical to achieving the goals and objectives of PV, including collection and
handling of ICSRs, signal management, and periodic safety reports.6
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Regulatory frameworks generally recommend a risk-based approach in the development,
deployment, monitoring, documentation and regulatory oversight of Al systems, to ensure that
relevant risks are anticipated, identified and mitigated throughout the system lifecycle.4.5.6
The EU Al Act introduces four risk categories for Al systems: low or minimal risk, limited risk
(transparency obligations), high risk, and unacceptable risk (prohibited Al practices). High-risk
Al systems, which include e.g. Al-based medical software/devices or Al systems used for
staff recruitment, are associated with strict requirements and obligations on providers and
deployers, including risk-mitigation systems, high quality data sets for training, validation and
testing, logging of activity, detailed documentation, clear user information, human oversight,
and a high level of robustness, accuracy, and cybersecurity. While the guiding principles
advocated throughout this report overlap with the EU Al Act’s requirements for high-risk Al
systems, determining the applicable EU Al Act’s risk category of an Al system considered
for integration into an organisation’s PV process will likely require a careful case-by-case
assessment, with legal advice as appropriate. Within the medicines’ lifecycle, EMA foresees
Al systems with ‘high patient risk’ in use cases where patient safety is affected and Al
systems with ‘high regulatory impact’ in use cases where impact on the regulatory decision
making is substantial.8 The AIDA was developed to ensure the development of responsible
Al in Canada, with a risk-based approach aligned with international norms, including the EU
Al Act, the OECD Al Principles, and the US National Institute of Standards and Technology
(NIST) Risk Management Framework (RMF).9

During development and other stages of an Al solution’s lifecycle, applicants and developers
should consider engaging actively with regulatory authorities and seek suitable scientific
advice, as relevant and depending on the level of risk to individual patients, public health or
the regulatory decision making. Where necessary, technical qualification of the Al technology
through appropriate channels should be sought based on legislative or regulatory requirements
applicable to medicinal products, medical devices and/or software development.12.10 Due to
its fast-moving nature, the use of Al technology in PV will pose challenges to both regulators,
required to adapt and keep abreast of this evolving field,10 and industry PV stakeholders,
required to maintain regulatory compliance (see Chapter 10 on Future considerations for
development and deployment of artificial intelligence in pharmacovigilance).

3.1.2. Motivation and interplay with other guiding principles

While the integration of Al systems into PV processes may help address human errors,
inconsistencies and limitations, it is associated with some risks and challenges. A sound,
risk-based approach will allow organisations to focus their efforts and resources where
they matter most to maximise their Al capabilities while ensuring that guiding principles are
upheld, as described earlier.

Arisk-based approach is applicable to, and influenced by, the other guiding principles presented
in this report. Notably, a risk-based approach will inform where, when, how and how much
human oversight should be implemented within PV processes involving Al in addition to other
risk mitigation activities. Conversely, an Al solution may be risk-assessed taking into account
the degree and nature of existing human oversight (see Chapter on Human oversight). A risk-
based approach should be applied to the testing and validation of Al systems (see Chapter
on Validity & Robustness) and the level of documentation and record-keeping (see Chapter
on Transparency). A risk-based approach is also relevant to data privacy and fairness and
equity. For example, Al systems should be assessed for any risks that may affect specific




groups and cause them to be under-served or biased against, and those risks should be
appropriately mitigated against (see Chapter on Fairness & Equity).

3.1.3. Types of risks

This section briefly outlines some of the risks potentially associated with the use of Al
systems in PV.

Risks to patient safety and public health

Inadequate use of Al systems in PV, or their poor performance, may impede the fulfilment of
PV objectives: detection, collection, assessment, understanding and prevention of adverse
effects of medicinal products, which may come at the cost of patient safety, public health
and compliance to regulatory requirements. Unreliable or inaccurate outputs produced by an
Al system, including but not limited to false negatives or false positives, or unfair bias, could
negatively impact PV activities with e.g. relevant AEs not captured, events misclassified during
case processing, or signals missed. This could result in safety issues not being identified
or being identified with delay, potentially putting patients at risk. In rare scenarios, the late
detection of new, unexpected safety signals could have a major public health impact (e.g.
‘Black swan’ events).11 An initially robust Al system could also start underperforming over
time due to e.g. model drift, or become inoperative due to an IT incident or system failure,
which would impede the PV activity that the Al system is intended to support.

Risks to user trust and engagement

The lack of transparency and interpretability of certain Al algorithms, or their use in tasks
that are perceived as cognitively challenging for humans (e.g. causality assessment),
may hinder trust and acceptance by users, including PV professionals1? (see Chapter on
Transparency). Lack of trust from users may also result from previous poor experience
with Al systems of insufficient validity and robustness, leading to mistrust of Al systems in
general. In clinic-based PV settings, a more subtle potential source of mistrust is ‘uniqueness
neglect’, in which patients prefer a human clinician over a more accurate computer due
to a belief that machines do not fully accommodate their personal human uniqueness.13
Other possible sources of mistrust include poor performance for certain subpopulations
or failure to protect confidentiality of personal data during the development or operation of
an Al solution. Conversely, some users may put excessive trust in Al solutions, leading to
automation bias (especially if those have shown robust performance upon validation) and
the resulting unconscious bias to accept erroneous outputs. Additionally, integrating Al
solutions into existing workflows and systems may pose technical, organisational, and cultural
challenges, with a risk of degraded job motivation or satisfaction in the absence of adequate
training and change management strategies (see Chapter on Human oversight).

Risks to efficiency

Although the integration of Al in PV processes is generally aimed at increasing efficiency,
substandard Al solutions may cause more manual work than they save, if for instance,
significant time is required to understand and verify the Al outputs or bring them up to
acceptable standards. Uncertainties, such as false positives, in interpretations and actions
based on Al outputs might add to inefficiencies or suboptimal use of limited resources. It is
also important to recognise that some PV problems may not require an Al solution.
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Other types of risks

Other risks include misalignment or misuse, 4 and risks related to data privacy, cybersecurity,
intellectual property, liability, or economic and reputational aspects.

The rest of this chapter mainly focusses on the impact that the use of Al systems in PV
processes could have on patient safety. Other risks and challenges are further discussed
in the chapters on Data Privacy, Fairness & Equity, Transparency, Human oversight and
Governance & Accountability.

3.2. Risk assessment

3.2.1. General considerations

Organisations planning to deploy Al to support PV processes are expected to perform a
thorough risk analysis. This assessment should be performed for each Al system and should
form the basis for a risk-proportionate approach applied throughout the Al solution’s lifecycle
from development to routine use.

When determining the level of risk related to the implementation of Al within a PV system,
key considerations include the Al technology itself, the context of use, the likelihood of risks
materialising, their detectability and their potential impact.

Artificial intelligence technology

The level of risk may depend on the type of system used (e.g. static vs dynamic model),
the underlying data (type and quality), the novelty of the technology (i.e. risks may be better
characterised with older approaches) or the maturity of the system (i.e. lifecycle stage).

Particular caution should be exercised with the integration of GenAl models within PV
processes. Compared to simpler or more explainable Al approaches, the non-deterministic
nature of GenAl and similar Al models, the opacity of training data and the potential for
hallucinations (meaning the generation of outputs that may lead to seemingly coherent and
convincing outputs that may be deceiving for humans-in/on-the-loop) may make the detection
and mitigation of issues more challenging and require consideration of further guardrails
(see Section on Risk mitigation). Multi-agent systems may carry specific risks linked to the
autonomy individual agents are granted and to the inter-agent dependencies with potential
cascading failures.15

As the Al landscape continues to evolve, so will Al-related risk areas. New risks may emerge
while current challenges, including those associated with GenAl/LLMs may be addressed.

Context of use and degree of influence

These broadly refer to the place and importance of the Al solution within the overall PV
system, including:

Whether or not the Al solution is used in a critical PV process or high-risk context
(e.g. emergency Public Health use, novel substance, clinical trial cases);



At which stage within a particular process the Al system intervenes (e.g. automated
triage of relevant cases as a preliminary step to signal review) and whether the solution
is assistive or directly supports a PV process;

The relative importance of the model outputs in the decision-making vs other information
sources or activities;

The extent of human involvement and oversight in the process (see Chapter on
Human oversight).

Impact and likelihood

Not all occurrences of system malfunction or suboptimal model performance are as likely,
nor will they have the same impact. For instance, a duplicate detection solution applied to
a very large database is not expected to detect 100% of duplicates but missed duplicates
will have no or limited consequences in terms of patient safety, whereas the late detection
of a very serious signal in a context of mass patient exposure happens very rarely but may
have dramatic public health consequences (i.e. black swan event).

3.2.2. Examples of structured approaches

Risk-based assessment frameworks have been proposed in various domains and may provide
inspiration to organisations wishing to deploy Al solutions within PV systems. Selected
examples are briefly described hereafter.

Credibility assessment framework

The US FDA proposes a stepwise approach to demonstrate the credibility of Al models
to produce information or data intended to support regulatory decision making regarding
the safety, effectiveness, or quality of medicinal products (see also Chapter Landscape
analysis).161 Similar frameworks have been proposed for the use of computational models in
medical device submissions!6 or drug development.17 The preliminary steps of the credibility
assessment, as outlined below, help assess the model risk.

1. Define the question of interest: This describes the specific question, decision, or concern
to be addressed by the Al model.

2. Define the context of use: this is a description of how the model will be used to address
the question of interest, i.e. what will be modelled, how model outputs will be used and
whether other information will be used in conjunction with the model outputs.

3. Assess the Al model risk: this is defined by (i) the contribution of the evidence derived
from the Al model relative to other contributing evidence used to inform the question of
interest, i.e. model influence; and (ii) the significance of an adverse outcome resulting
from an incorrect decision concerning the question of interest, i.e. decision consequence.
The ratings for decision consequence and model influence are independently determined,
but are shaped by the context of use, thus enabling model risk to be case-specific. The Al
model risk assessment involves subject matter expertise. As illustrated in Figure 4, the model
risk moves from low to high as decision consequence or model influence increases.
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Figure 4: Model risk matrix
Source: U.S. Food and Drug Administration.161

High Risk

Decision Consequence

Low Risk

Model Influence

Algorithmic impact assessment

In Canada, the algorithmic impact assessment (AlA) tool18 is designed to help departments
and agencies better understand and manage the risks associated with automated decision
systems. It is composed of a multitude of questions that consider factors within risk areas
(i.e. project, system design, algorithm, decision, impact and data) and mitigation areas (i.e.
consultations and de-risking and mitigation measures), which contribute to an assessment
score. The value of each question is weighted based on the level of risk it introduces or
mitigates in the automation project. For the risk areas, there are 65 questions with a maximum
score of 169, and for the mitigation, there are 41 questions with a maximum score of 75.
The score percentage range determines the impact level of the automated decision system
into four levels:

— Level | - little to no impact (0% to 25%);
— Level Il - moderate impact (26% to 50%);
— Level lll = high impact (51% to 75%); and
— Level IV - very high impact (76% to 100%).

The algorithmic impact assessment is required prior to the production of any automated
decision system under the Directive on Automated Decision-Making.19

3.3. lIssue detection and risk mitigation

Issue detection through continuous monitoring

Defining when to mitigate risk requires knowing how to detect issues based on a pre-defined
risk-proportionate testing and verification plan which is laid out during the development of the
Al system. Testing and verification are essential steps of Computerized System Validation
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(CSV), which considers different levels based on Al system maturity. The latest version of
the GAMP 5 of the International Society for Pharmaceutical Engineering (ISPE), a framework
widely adopted by pharmaceutical companies and health authorities, contains an appendix
focusing on Al and ML.20 Testing should be based on pre-defined key performance indicators
(KPIs) and acceptance criteria, considering the human performance, and account for the
identified risk areas, e.g. low quality data.

After the Al system has been proven fit for purpose and deployed, an ongoing process
should be in place to monitor its performance and trigger mitigation measures when issues
are detected.

A risk-based approach may be very conservative in the initial stages of deployment with
additional pre-determined mitigation measures in place, for example, high percentage of
human-in-the-loop (HITL). As confidence in the routine performance increases over time, based
on pre-defined indicators and examination of sample outputs by human experts, a gradual
reduction in the frequency, amount (e.g. number of samples) or depth of human controls
may be considered. Al-assisted human oversight, i.e. the use of Al models to help monitor
the main Al solutions, may also be considered (see also Chapter on Human oversight).

Reactive mitigation approaches

When issues or performance deviations are detected, risk-based mitigation measures
may include:

HITL: Increased or full human review/quality control (QC), indefinitely or until performance
levels are back within acceptance criteria, e.g. if a seriousness detection algorithm
fails to detect seriousness criteria in some cases, i.e. false negatives, mitigation
could involve reviewing all cases classified as non-serious until the issue is understood
and addressed;

Model re-training: targeted re-training of the underlying models using recent or
challenging examples;

Decommissioning of the system when mitigation options appear inefficient or costly,
in which case alternative approaches should be considered.

Other (proactive) mitigation approaches

LLM-specific strategies, including grounding techniques such as retrieval augmented
generation (RAG) or other guardrails against hallucinations2!, or contingency protocols
to address multi-agent system failures;

Articulation of the level of uncertainty or confidence scoring of Al outputs;16

Approaches to combat automation bias or complacency,?? e.g. mock data simulations
or injection of simulated false positive outputs for verification / assessment in a
training environment;

Red teaming approaches in very high-risk situations. Red teaming is when a group
of people is authorised and organised to emulate a potential adversary’s attack or
exploitation capabilities against an enterprise’s security posture. The Red Team'’s
objective is to improve enterprise cybersecurity by demonstrating the impacts of
successful attacks and by demonstrating what works for the defenders (i.e. the Blue
Team) in an operational environment. This is also known as Cyber Red Team.23
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The above aspects are further developed in the Chapters on Validity & Robustness, Human
oversight, and Governance & Accountability.

3.4. Review and documentation of risk-based
approaches

The risk-based approach should be reviewed and the oversight measures adapted as needed
at regular pre-determined intervals or whenever the Al solution shows performance issues.
The evolving nature of Al technology and the emergence of new technical options for risk
mitigation also call for dynamic, adaptable approaches to risk assessment frameworks.

Finally, Al components, especially those deployed in critical PV processes, should be included
in the organisation’s business continuity plan. The aim is to ensure that the PV system'’s
objectives and regulatory compliance are maintained in case of failure or performance
degradation of the Al solution.

The key components of the Al-related risk management strategy should be documented (see
also Chapter on Transparency), including:

Al system risk assessment;

Testing plan with KPIs, acceptance criteria and results of testing and validation
activities including any comparative assessments;

Planned mitigation measures including human oversight strategy and criteria for more
stringent or reduced QC, and continual monitoring after deployment;

Plans for periodic re-assessment and update of the risk management strategy;
Business continuity plan.
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CHAPTER 4.
HUMAN OVERSIGHT

Principle

Human oversight refers to the expected role of humans in the design, implementation,
monitoring, and analysis of Al systems in PV. It requires a framework to manage performance
and to detect and mitigate potential issues related to the Al solution.

Key messages

Human oversight supports the optimisation of the performance of Al systems deployed
in PV and increases trustworthiness and accountability.

The extent and nature of human oversight for an Al system should follow a risk-
based approach.

Quality assurance (QA) principles should apply to the conduct of the human oversight
of Al solutions in PV.

The increased use of automation and Al to support PV processes will require redefining
skillsets to integrate Al with human expertise, ensuring robustness and reliability in
decision-making processes. This will lead to a transformation of traditional roles and
competencies that requires appropriate change management and training strategies.

4.1. Introduction

4.1.1. Motivation

Human oversight is required to minimise the risk that an Al solution undermines human
autonomy or causes other negative or unintended effects.! The principle of protection of
human autonomy requires that humans remain in control of the Al systems.2 Human agency
and oversight are key requirements of trustworthy Al according to several regulatory
frameworks, including the Assessment List for Trustworthy Artificial Intelligence (ALTAI),
the EU Al Act, and the Canadian AIDA, for high-risk systems#3.4 (see also Chapter on
Landscape analysis). Although human review by itself does not guarantee full accuracy of
outputs, human oversight is essential to monitor the performance of Al systems and make
corrections if needed, thereby increasing trustworthiness and human accountability for the
Al system, especially in some high-risk applications.

Al systems are often intended to help eliminate manual, labour-intensive or complicated
work performed by humans, or to enhance human performance when used as intelligence
augmentation tools. However, due to the complexity and sensitivity of certain PV tasks,
and the complex and variable nature of PV data, Al components will exhibit increasingly
good but imperfect performance. This may require more extensive human intervention
during the development, evaluation and deployment of some Al systems in PV to monitor
and mitigate risks.
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A key challenge and important starting point for defining an Al QA approach is to strike a
balance between the efficiency boost that an Al solution is intended to provide and the level
of human intervention that may be required to ensure a high-quality output. In plain words,
ideally a human expert should not do work that a machine can do well, and a machine should
not do poorly the work that a human expert can do well.5

Human oversight is fundamental to a sound risk-based approach (see Chapter on Risk-based
approach). The level of monitoring of the performance of Al solutions by humans should
be proportional to the potential impact of an undetected mistake or spurious output by the
Al system.

4.2. Considerations on human involvement and
oversight

4.2.1. Multidisciplinary expertise

The successful integration of Al systems into PV systems requires that multidisciplinary
human expertise is mobilised as appropriate throughout the lifecycle of the solution,
from development to routine use. This multidisciplinary expertise is usually obtained through a
close collaboration between domain experts, which may include, as applicable, PV professionals,
QA staff, data scientists, statisticians, Al/ML engineers, data engineers, prompt engineers,
IT specialists, cybersecurity experts, platform analysts, software engineers, ethics specialists,
legal experts, data protection officers, project managers, senior management, etc. (see
also Chapters on Validity & Robustness and Governance & Accountability).

PV professionals, i.e. staff performing core tasks in ICSR management, signal detection
and analytics or risk management, hold robust ‘domain’ or ‘subject matter’ expertise, which
is instrumental to the effective integration of Al capabilities into PV processes. As such,
PV professionals should be engaged in the design, development, pre-deployment and testing/
piloting/revisions of Al systems to ensure that the systems are fit for purpose and widely
accepted by the end-users that the PV professionals themselves will ultimately be.

4.2.2. Mechanisms of human oversight

Human oversight may serve different objectives and be achieved through governance
mechanisms at different stages.6 There are various possible approaches based on the activity
monitored and how much autonomy is granted to an Al system. Depending on the scope,
extent and intensity of human intervention, the European Commission’s Ethics Guidelines
for trustworthy Al describe three main governance mechanisms: HITL, human-on-the-loop
(HOTL) and human-in-command (HIC). HITL refers to the capability for human intervention in
every decision cycle of the Al system. HOTL, which foresees a higher autonomy of the Al
system, refers to the capability for human intervention during the design of an Al system and
monitoring of its operation. The concept of ‘human on many loops’, a special case of HOTL,
addresses the scalability of monitoring multiple Al models.” HIC refers to the capability to
oversee the overall activity of an Al system, including its broader economic, societal, legal
and ethical impact, and the ability to decide when and how to use an Al system. This may
include the decision not to use an Al system in a particular situation, to establish levels of



human discretion during its use, or to ensure the ability to override a decision made by the
system.6 The delineations of these three terms may vary according to sources? and their
practical implementation may differ according to individual organisations and use cases.
As an example, after the decision has been made to build an Al system to support a PV
process (HIC), human oversight may be exercised as early as during the development phase
to help define the system’s context of use or support the identification or development of
reference datasets (HOTL) and, when deployed, to perform QCs of the system (HOTL) or as
part of its execution in case of a semi-automated system (HITL).

As a rule, some level of human oversight is always required and the absence of a human-
in/on-the-loop in any major or supporting PV process should be substantiated by a risk
assessment, with risk mitigation measures in place.

4.2.3. Monitoring and interacting with deployed artificial
intelligence systems

The level, frequency, means and modalities of human intervention required to monitor and
interact with Al systems depend on the complexity of the task, the risks associated with
suboptimal outputs, the type of Al system, and its performance (see Chapters on Risk-
based approach and Validity & Robustness). As experience with Al evolves, further clarity,
guidance, and consistency in assessing these factors are likely to develop. As suggested
above, the respective roles of the human and Al components in a particular process could
be seen as a continuum, from an Al system merely performing preparatory work to support
assessment and decision making by a human, to a near-fully automated system merely
monitored by a human who performs QCs. Intermediate approaches may also be envisaged
where, for instance, an Al system flags cases it struggles with to a human specialist.

The metrics and KPIs used to monitor the performance of deployed Al solutions should be
pre-defined as part of the testing and validation plan (see Chapters on Validity & Robustness
and Risk-based approach).

In situations where the standalone performance of an Al system is suboptimal (e.g. if it cannot
match the established human performance), in complex or ambiguous cases, or when the
associated risks are unacceptably high, one or more manual process steps must be considered,
with a human fully in control of the final output. Even when a static Al-based system exceeds
human performance upon validation, monitoring after deployment is still recommended to
ensure that the performance does not fall below acceptable levels over time (see Chapter
on Validity & Robustness). Each time an Al system undergoes modifications, human oversight
should be directed at the change i.e. change-specific samples should be prioritised.

There are different ways the performance of an Al solution can be monitored once deployed.
In a static Al system, one could perform a retrospective analysis by checking a sample
or the totality of generated outputs against expected outputs (see Chapter on Validity &
Robustness). This may be followed by post hoc corrections and re-training or re-validation
of the model. A more dynamic real-time, in-process interaction can also be envisaged where
independent human assessment is applied to confirm or correct the Al output in a decision-
support setting. In such a dynamic Al application, the interaction provides an opportunity
for immediate feedback to the algorithm to continuously learn and adjust if needed. Running
an independent model in parallel to the main Al system may also be an option in a one-off
or continuous manner (Al-assisted human oversight).
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Caution is required in the monitoring of GenAl/LLM-based systems. Humans-in/on-the-loop
should be aware of the inherent variability of outputs, limited explainability and risk of
hallucinations, and not overly rely on the Al system’s results. Processes must be robust,
demonstrated to be effective, and maintain their dependability even in the event of erroneous
outputs. Hallucinations, specifically, may lead to seemingly coherent and convincing outputs
that may be deceiving for humans-in/on-the-loop. Regardless of the underlying Al technology,
PV professionals should be empowered to challenge the system’s outputs based on their
experience and avoid falling for automation bias. On the other hand, they should be aware
of the possibility of confirmation bias and remain open to the possibility that an Al output,
albeit unexpected, is correct. Al systems with high performance may also warrant specific
monitoring strategies as humans are more prone to miss very rare errors than frequent
ones (‘low prevalence effect’).8

4.3. Transformation of traditional roles

As the PV landscape continues to embrace Al capabilities, a reduced dependency on large
workforces with PV expertise is expected due to the replacement of some of the activities
traditionally performed by PV professionals. Indeed, the increased use of automation and Al
within PV processes will unburden PV professionals from certain repetitive, time-consuming,
manual activities. This may render certain roles obsolete and thereby reduce the size,
diversity and experience of the PV workforce, not unlike the impact on staff observed when
organisations offshore activities. On the other hand, the fast-evolving pace of Al capabilities
and the dynamic nature of Al performance may make it challenging for organisations to
accurately forecast staffing needs and maintain optimal and sustainable human resource
models. The evolving landscape may create legitimate concerns and anxiety about job
displacement and employment prospects in the PV space, but also around work culture,
motivation and fulfilment. Perceived unfairness may also ensue from the fact that some Al
models are trained using historical datasets and documented decisions based on the work
originally performed by PV professionals.

On a brighter side, the introduction of Al in PV brings opportunities for growth for PV
professionals. With fewer menial time-consuming tasks, PV experts will be able to focus on
more scientifically complex and intellectually stimulating PV activities. In addition, the business
needs associated with Al systems will bring new roles in governance and human oversight.
As mentioned earlier, PV professionals will be increasingly involved in the testing, evaluation,
implementation, oversight and use of Al models. They will often be best placed to identify
those activities in need of automation and suggest Al use cases accordingly. They may
participate in design and development activities including model training and validation,
participate in user acceptance testing, manage the challenges of automating and modifying
existing processes, perform monitoring and QC activities, identify and resolve issues related
to inconsistent assessments, and interact with automation experts and vendors.

Contributing to the development, use, and maintenance of Al systems will allow PV professionals
to evolve with the changing PV landscape, but this will require that they extend their skillsets
beyond core PV competencies.? These new skills include specific competencies around the
use of the new systems and the critical evaluation of their outputs, as well as more general
literacy around data science and Al, including a good understanding of Al capabilities, risks
and limitations. Regulatory frameworks such as the EU Al Act impose an obligation on



organisations to ensure a sufficient level of Al literacy of staff operating or using deployed
Al systems.6

Beyond PV professionals, staff working in QA also need to develop an understanding of
the organisation’s human oversight strategy and of approaches to validating Al systems,
to ensure that human oversight activities are adequate. Likewise, Al experts involved in the
design and development of Al in PV solutions will need to develop an understanding of PV
processes and the implications of operating in a regulated environment.

Change management and readiness strategies are a key responsibility of organisations,
which should put PV staff at the centre of role redefinition and upskilling opportunities.
Adequate change management and training plans are a pre-requisite to a seamless, safe and
successful integration of Al systems into PV processes, with a wide engagement and adoption
by staff and smooth interactions between various roles (see also Chapter on Governance
& Accountability). Structured competency development programs with defined learning and
career progression frameworks should be considered.

Training programs should be carefully crafted, documented and evaluated so that their
content and format (including materials and methods) meet the learning needs of the target
audience (e.g. PV end-users, QA staff, Al experts). Cross-functional training between e.g.
PV professionals, data scientists, and QA teams may be a worthwhile approach. Human training
in a decision-support context is an approach that may be drawn on to train staff monitoring
and interacting with Al systems. It generally refers to programs designed to educate staff to
use specific tools and make informed decisions effectively. This involves not only showing
staff how to use the software front-end but also explaining the back-end functionalities and
helping them build the skillset for critically evaluating the automated output. For example,
staff should be trained on identified areas where the system’s outputs may require human
review or decision, due to known limitations. Training modalities (e.g. classroom-based vs
online, live vs asynchronous) should be adapted to the system’s complexity, limitations,
the supported use case or task including decision and action points and the specific needs
of the organisation or the individual.10,11,12,13
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CHAPTER 5.
VALIDITY & ROBUSTNESS

Principle

Validity means that a system achieves its intended purpose within acceptable parameters.
It requires predefining acceptable performance levels, selecting appropriate data for model
training and/or testing, assessing model performance in a realistic setting, and integrating
the system into an ongoing QA process.

Robustness means that a system reliably achieves its intended objectives (while accounting
for variations in data).

Key messages

PV professionals and decision makers must learn to critically appraise Al systems
whether they acquire them or participate in their development.

A performance evaluation able to demonstrate acceptable and robust results for the
intended use under realistic conditions is crucial. Such an evaluation should cover a
wide enough range of relevant examples to interrogate the Al model’s objective and
is often based on statistical metrics.

There should be a focus on looking to ensure sufficient representation of relevant
types of data in the test set(s) to detect biases, promote adequate and generalisable
performance across the intended deployment domain, assess usability, and identify
circumstances where the model may underperform.

Many PV applications focus on recognition of rare events or patterns (e.g. safety
signals and duplicates) and may require enrichment of test sets with the event of
interest. If so, special care should be taken to attempt to ensure that performance
evaluation results generalise to real-world settings.

5.1. Introduction

Ensuring the validity and robustness of Al solutions is central to ensuring patient safety,
building trust and achieving the best possible value for end-users. To invest resources
optimally, PV professionals and decision makers must learn to critically appraise and evaluate
proposed Al systems regardless of whether they develop them in-house or acquire them
from other organisations. This requires familiarity with basic principles for performance
evaluation and some of the common pitfalls that may mislead expectations on real-world
performance in prospective use.

Al models will often be embedded in broader computer systems supporting the PV use case.
These should be subjected to general computer system-validation according to standard
practices for the organisation. In general, this will be considered separately from ensuring
the validity and robustness of the core Al model (and is out of scope for this document).
However, some special considerations regarding validation of systems that include dynamic
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Al models that continually learn from and adapt to incoming data are presented in the
Section on Continuous integration and deployment. Our focus will be on key considerations
related to establishing the validity and robustness of Al models themselves, including their
dependency on underlying data for training and deployment and the need for probabilistic
/ statistical performance evaluation.

The nature of PV data may in some instances impact the ability and approach to leveraging
Al. Al models depend heavily on the quality of the data they are trained on and the data
they use for ongoing predictions. PV data suffer from inconsistencies, incomplete entries,
and inaccuracies, and may vary substantially depending on the source. For example,
the contribution of AE reports is for the most part voluntary, and reporting practices vary
over time, between organisations and types of reporters. This may impact the types of AEs
that are reported, which information is captured, and how it is encoded. Inconsistencies
and inaccuracies can lead to models that are less accurate, and systematic variability can
reduce the generalisability of Al models to adjacent domains and make them more sensitive
to data drift. They may also make it more difficult to ensure consistent performance across
regions and organisations (see also Chapter on Fairness & Equity).

Generally, the variable quality and consistency of AE reports and the complex nature of
the studied drug-event relationships may require more extensive human involvement than
in other domains to ensure the validity and robustness of Al solutions for PV (see also the
Chapter on Human oversight). The practice of PV is subject to regulation, and regulatory
expectations regarding validity and robustness may differ from those of the business itself.

Performance evaluation and testing are crucial considerations in ensuring the validity and
robustness of Al models and the focus of this chapter. It will usually be more effective to
account for the same considerations also during development and training of Al models.
For example, bias mitigation for ML classifiers! may improve performance and so may cost-
sensitive learning when different types of errors are associated with different costs.2:3 At
the same time, it may not be necessary or feasible to do so to achieve good performance.
For example, LLMs can be capable of zero-shot learning, with solid performance on language
tasks for which they have not been specifically trained. Also, PV organisations may be offered
already developed Al systems where they cannot influence Al model development. In all these
scenarios, it remains important to ensure and demonstrate adequate performance on the
relevant tasks in independent testing with conditions reflecting the intended use.

5.2. Specification and design

5.2.1. Use case and deployment domain

The intended use case and deployment domain for Al solutions in PV should be clearly
defined, and the performance evaluation targeted to these, as far as possible. For example,
in evaluating methods for PV signal detection, historical safety signals would typically be a
more relevant basis for performance evaluation than well-known, already labelled adverse drug
reactions since their reporting patterns differ in important ways#. Similarly, if an Al model for
recognising AEs in free text is intended for broad use, its evaluation should include reports
related to various medicinal products and AEs, from both patients and health professionals,
in relevant languages, etc. Ideally, there should be sufficient representation of relevant types of



data in the training and test sets to promote adequate and generalisable performance across
the intended deployment domain, assess usability, detect biases, and identify circumstances
where the model may underperform. For more capable Al systems, it may also be relevant
to specify refusal policies which determine which tasks the system will permit and refuse.

Design of Al systems may also account for an Al model's susceptibility to overfitting,
computational complexity and robustness to outliers, especially if test sets will not be large
and diverse enough to reliably capture their impact during performance evaluation. Complex
methods highly dependent on skilful design and deployment by human experts may not
readily transfer to similar application areas without access to the same expertise. In routine
deployment, one is less concerned about whether one method is theoretically better than
another but rather with which one is likely to perform best for a given purpose, irrespective
of what design/analytical choices one made.

5.2.2. Multidisciplinary collaboration

Ensuring the validity and robustness of Al models often requires collaboration across
disciplines, including not only PV decision makers and practitioners, but also for example,
data scientists and Al experts, and individuals with experience in computer systems validation.
Diverse perspectives and expertise, in-depth understanding of a model’s intended integration
into the PV system and defined desired benefits and associated risks can help ensure that
deployed Al solutions are effective, and address identified needs over their lifecycle.

Al systems addressing the complex relationships between drugs and AEs often require a
HITL, especially in view of the variable quality and provenance of the underlying PV data.
Al outputs in such applications need to be interpreted considering the broader clinical
context, known pharmacological mechanisms, and possible alternative explanations that
are central to causality assessment5.6 but which may not be captured in the data at hand
and that the Al might not fully account for. Human intervention ensures that the final output
is clinically meaningful and scientifically sound. On the other hand, more basic tasks such
as redaction of personal data or drug and AE encoding may lend themselves to automation
with minimal human intervention.

5.2.3. Definition of reference standards

Test sets must be aligned with the intended deployment domain(s) and able to demonstrate
performance under realistic conditions. Reference standards relevant to the intended use
need to be clearly defined and kept up to date. In many PV applications, these may be
based on human execution of the task in question, in which case a set of real examples
may be classified (annotated) by a human specialist. Approaches to mitigate inconsistencies
in such annotations are often required, for example by having multiple human assessors
annotate (parts of) the same data. When legacy human annotations are used as the reference
standard, efforts should be made to clarify the definitions of relevant categories in the
reference standard retrospectively, and to ensure that all included historical annotations
adhere to these standards and are relevant for the intended future use. This may require
the omission of available annotations that were developed following outdated principles or
were based on different types of data. If reference standards are to be developed de novo,
an explicit annotation guideline is recommended. This in turn may require a strengthening
and clarification of existing processes and guidelines for human execution of the PV task of
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interest, sometimes bringing value by harmonising and making explicit decision processes
that may otherwise remain implicit and variable within an organisation. Based on the size
and scale of the project, special care may be required to ensure that annotations of the test
set used for performance evaluation are independent of the development of the Al model;
for example, annotations may be performed preferably by individuals blinded to the specific
Al model to avoid conflicts of interest and confirmation bias. Similarly, if testing human-Al
teams, the qualifications of human team member(s) should match those of the intended use
case and deployment domain.

Sometimes, boundaries between reference standard categories are not clear, which yields
additional sources of possible ambiguity. For example, different organisations may have
different internal conventions regarding how strong the conviction should be that two AE
reports refer to the same event for them to be classified as suspected duplicates. This may
vary even within an organisation depending on the intended use case; for example, one may
cast a wider net in highlighting suspected duplicates if each highlighted pair will be reviewed by
a human before action and be more conservative if suspected duplicates will be automatically
removed prior to statistical signal detection. Similar ambiguities exist in NLP tasks seeking
to map free text to standard terminologies such as MedDRA where there may be multiple
acceptable terms/codes for a specific verbatim, and it may be inappropriate to treat terms
adjacent to the reference standard annotation as false positives. The ambiguity is even more
pronounced for signal detection and causality assessment tasks, where human experts may
often disagree on whether there is sufficient evidence of a causal association between a
drug and an AE (at a given point in time).

A general challenge in PV has been ensuring sustainable and reusable access to reference
sets. The potential for widespread impact of Al solutions in PV underscores the importance
of maintaining up-to-date, accessible reference standards with clarity on how they were
developed and related assumptions.

5.3. Performance evaluation

Performance evaluation is necessary for critical appraisal of Al models. The ability to carry
out or assess performance evaluations are crucial skills for those who develop Al systems
and for those to whom Al systems are proposed.

Many of the metrics relevant to performance evaluation for Al models in PV come from
information retrieval and apply primarily to use cases that can be viewed as binary
classification tasks. In binary classification, we may refer to those instances that we want
a method to retrieve as positive controls and those that we do not want it to retrieve as
negative controls. We use this terminology throughout the description below (sometimes
replacing positive controls by target events), acknowledging that other use cases may require
different frameworks of evaluation, for example considering ranked orderings, unsupervised
learning, or content generation.

Al systems, like humans, will typically not achieve perfect performance on more complex
classification tasks. In fact, there can be an inherent ambiguity as to what is the correct
classification of some instances in real-world applications also for domain experts (e.g.
for lack of information). Therefore, performance is typically assessed statistically for a
sample of cases referred to as the test set. Recall measures how many of the target events



are correctly identified (recalled) by the Al solution. Sensitivity is a synonym. Precision
measures the proportion of target events among all events highlighted by the Al solution.
Positive predictive value (PPV) is a synonym.

The balance between precision and recall (and correspondingly between sensitivity and
specificity) can typically be tweaked and should be determined based on the relative costs of
different types of errors (and utilities associated with correct decisions). Composite metrics like
the F1 score (the harmonic mean of precision and recall) provide single-dimensional measures
of predictive accuracy accounting for both precision and recall under some assumptions
(for the F1 score that precision and recall are of equal importance and false positives as
costly as false negatives). Test sets need to be large, diverse, and representative enough
to reflect a sufficient portion of the intended deployment domain and to provide statistically
robust estimates of performance. They should include different populations and consider
possible scenarios in line with the intended use.i

Since the primary interest is the expected performance of an Al solution in prospective
use (as part of an overall system), performance evaluation should be independent of any
data directly used during its development (this is in addition to any cross-validation or other
separation of data for training and validation during development). Any user-driven design
decisions should be fixed and finalised before Al model developers first access test sets. This is
especially important for more complex methods with numerous analytical choices regarding
model architecture, hyper-parameters, and model initialisation.” Various potential sources
of dependence between development and evaluation should be considered and eliminated,
the most obvious being the risk that the same individual data points are considered in both
phases. More subtle forms of dependence, can occur and lead to optimistic performance
estimates, for example there may be a disproportional overlap in scope between the training
and test sets compared with the deployment domain e.g. if training and test sets cover the
same subset of drugs and AEs, and the deployment domain is broader.8

5.3.1. Benchmarking

Ideally, performance should be compared against relevant benchmark methods, if available.
For example, Al-based signal detection methods may currently be compared against standard
disproportionality measures, if this is an organisation’s baseline method. In the case of more
complex benchmark methods, including those based on Al models, special care must be
taken to ensure that the benchmark methods have been appropriately instantiated and fine-
tuned to the task at hand to serve as a relevant comparator.

When public benchmark test sets exist, performance may be evaluated against these, ideally
as a complement to performance evaluation targeted to the deployment domain of interest.
At present, public benchmarks exist only for some specific applications in PV. They include
sets of emerging safety signals,9.10 sets of established adverse drug reactions,11,12,13,14,15
and clinically relevant drug-drug interactions.16 However, continual access to benchmark
reference sets over time can be a challenge and the degree to which they are maintained
and kept up to date varies.

To complement overall performance estimates, subgroup analyses can provide useful
information on the strengths and weaknesses of the Al model for different parts of the
deployment domains (See also Chapter on Fairness & Equity). Along the same lines, sensitivity

i For a continually updated inventory, see for example https://oecd.ai/en/catalogue/metrics
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analyses can help assess the robustness of the Al model and its evaluation to variations in
specification and design.

5.3.2. Special considerations for low-prevalence settings

Many PV applications focus on recognising rare patterns and events. For example, in a case
retrieval task most reports will typically not be relevant for a given topic, such as pregnancy,
medication errors, positive rechallenge interventions, or drug-induced liver injury. Similarly,
for PV signal detection, most drug-event combinations are not true adverse drug reactions,
let alone recently detected safety signals. Managing and analysing these rare events
effectively requires reliable reference datasets, however, existing resources, such as SIDER,
are often limited by outdated and static information, underscoring the need for alternative
solutions.17 As an even more extreme example, pairs of duplicate reports are vanishingly
rare among all possible pairs of reports in large collections of individual case reports — if
10% of the reports in a database of 1 million reports have a (single) duplicate, the chance
that a randomly selected pair would be duplicates is only 1 in 10 million.ii

This low prevalence of positive controls (i.e. class imbalance) limits our ability to achieve
accurate performance evaluation and requires special care and consideration. A balance may
need to be struck between the quality of each annotation and the resulting size of the test
sets (or the cost/time to develop them), for example related to whether double annotations
by multiple assessors are feasible to increase quality or evaluate consistency. Moreover,
straight random samples of test cases often contain too few positive controls whereas test
sets enriched with positive controls can lead to misleading estimates of precision and recall.
For a deeper elaboration regarding this, see for example Norén et al 2025.18

If heuristics are used to increase the proportion of target events in the test set, then recall
may be over-estimated since target events which are harder to identify for the Al model,
may less likely be included in the test set. This does not mean that rebalancing approaches
should necessarily be avoided but if they are used, this should be acknowledged and
critically assessed.

Similarly, precision is highly dependent on the prevalence of target events in the test set,
and if test sets have been enriched with target events, naive test set precision estimates
will be optimistic as the baseline prevalence of the target event is inflated. For reliable
precision estimates, the prevalence of positive controls in the test sets should match
as far as possible that of the intended deployment. For a specific Al model, precision is
straightforward to estimate by applying the Al model to a random sample and annotating
all highlighted instances. However, such test sets for precision are tied to the Al model in
question and will need to be developed again, or at least extended, if the model is modified.
They are not useful to estimate recall.

Estimates of precision and recall depend on the selected decision threshold, and performance
evaluation should be targeted at decision thresholds relevant to the intended deployment
domain, i.e. with a relevant balance between false positives and false negatives.

i 0.10 x 1/106



5.3.3. Beyond summary statistics

Summary statistics as captured by the metrics described in the previous section go only
so far in enabling us to assess and understand the performance of an Al model. Access
to and ability to inspect representative, concrete examples of an Al model’s classification
of individual instances in a test set is also important. Examining false positives and false
negatives in an error analysis step can each give useful insights regarding the strengths
and limitations of the Al solution and its evaluation. For example, if a false negative in de-
identification corresponds to a full name preceded by ‘Mr’ which has not been redacted
by the method, this may undermine end-users’ trust in the solution, even if overall recall is
excellent, because the error seems trivial. On the other hand, if the false negative is ‘AF" and
it is hard to know, even for a domain expert, from the surrounding text if these are initials or
an abbreviation for atrial fibrillation, then one should perhaps consider the overall precision
metric to be conservative. Review of correctly classified instances may in turn give insights
regarding an Al system’s capacity to solve challenging tasks. Does it correctly classify more
difficult cases or just the trivial ones? This may be especially important when there is no
baseline comparator method, and we may not understand from overall performance metrics
the difficulty of the task at hand. When there is a baseline comparator method, one may
review instances that are differentially classified by the two methods, to better understand
the nature of any improved performance of the proposed solution over the comparator.

5.3.4. Unsupervised learning

For Al systems performing unsupervised learning like cluster analysis, patterns are identified
in a data-driven manner without access to human-annotated reference sets. They require
other approaches to performance evaluation. In some cases, one may rely on human
subjective review and assessment of the Al output, but then potential cognitive biases must
be considered and mitigated. A possible solution may be to present the results of several
different Al models to a blinded, domain expert and ask which one they prefer. There are
also performance evaluation approaches specifically designed for unsupervised learning like
intruder detection analysis where domain experts are asked to spot an unrelated “intruder”
among items an Al model has grouped as related, and coherence is measured by the intruder
detection rate.19

5.3.5. Generative output

GenAl models can create open-ended, often longer, pieces of text (or other content) that
may be used without restriction or further post-processing into a pre-defined set of options
(e.g. yes/no or MedDRA Preferred Terms). Examples of such applications include text
summarisation, translation, report generation, and lay-language rewrites. There typically does
not exist a single correct output and aspects of the text such as fluency and coherence may
need to be evaluated along with task-specific metrics. This is a rapidly evolving field and at
the time of writing; multiple evaluation metrics are often used in parallel. For example, generic
metrics for readability and toxicity may be obtained, and when a ground truth reference text
exists (e.g. for translation or summarisation tasks), measures of syntactic (e.g. Bilingual
Evaluation Understudy or BLEU) or semantic (e.g. BERT score) text overlap can be computed.
Similarly, retainment of key entities can be measured against human-annotated reference
sets, if available. Human evaluation may also be obtained prospectively but should then
be designed and executed with care, as in the context of unsupervised learning discussed
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above; pairwise preference testing or evaluation of success rates for human task execution
supported by an Al system output are among the options. While human evaluation remains the
gold standard, generative LLMs can also be prompted to rate Al system outputs on various
dimensions as part of a holistic performance evaluation. Such LLMs-as-a-judge approaches
scale well but require a strong evaluator model that should ideally be distinct from the model
under evaluation, and human calibration is typically required. Recent examples of performance
evaluation for GenAl applications in PV include that of summarising AE reports20 and that
of LLM-generated clinical reasoning in the context of individual case causality assessment
for COVID-19 vaccine reports.2!

5.3.6. Non-deterministic systems

A deterministic Al system will always generate the same output for a given input. Predictive
models like support vector machines and decision trees are of this nature. So are certain
LLMs (e.g. masked encoders like BERT) and other deep neural networks used for classification
tasks, once their weights have been fixed at the end of training / fine-tuning. This is so,
even though their model fitting may include stochastic components, and re-training a model
on the same data may result in different parameters.

In contrast, methods for unsupervised learning like cluster analysis, network analysis,
or data-driven derivation of semantic vector representations of AEs may be stochastic and
generate different results when executed repeatedly on the same data. The same is true
for generative LLMs, which will typically produce different outputs for the same prompt,
without changes to the underlying models. For such Al models, stability of output can be a
key additional performance metric, reflecting how similar the results of repeated analyses
are. Sometime, the level of stochasticity can be directly controlled by hyper-parameters.
There may also be specific measures taken to reduce the variability in output depending
on the method. While repeatability of results can sometimes be artificially ensured through
seeding the pseudo random number generator, this may not be possible for proprietary
models and does not improve the inherent (in)stability of the Al solution, which should be
evaluated. Whether a non-deterministic Al system is appropriate for a given application will
depend on its context of use and the possible negative effects of variability in the output,
according to the principles of a risk-based approach.

5.4. Assessing artificial intelligence systems with
human-in-the-loop

Many Al systems aim for intelligence augmentation, i.e. to support and enhance human
decision making. In this context, the relevant focus of performance evaluation would be of
the human-Al team requiring a different nature of testing than described above. To date, there
is limited experience of such studies in PV applications, but at a minimum, they would need
to account for the variability in skills and preferences between different human members
of the team. Defining a relevant test set may also present new challenges: for example,
for signal detection applications, human domain experts could not be blinded to historical
safety signals; and it may be difficult to obtain a reference standard if the aim is for the
human-Al team to exceed the quality of classification by unassisted human domain experts.



What constitutes acceptable performance may need to account for how the Al system is
integrated with the PV system and how humans will interact with the system.22 For example,
performance evaluation for an NLP-based system to identify and extract AEs from source
documents might in addition to the overall performance evaluation consider whether errors
can be readily spotted in the results and whether the end-to-end hybrid process performs
better than a fully manual approach (for an example see Park et al 202323),

5.5. Continuous integration and deployment

Deployed models should be monitored in real-world use with a focus on maintained or
improved performance. In some circumstances, there may be reason to revise and update
performance criteria in production as the business understanding of the task is refined or
the conditions for the task itself change due to external factors.

For deployed Al solutions that incorporate ML components, there should be appropriate
processes and QCs for periodical re-training to manage risks of performance degradation
or negative impact from dataset drift. In some instances, the retraining may consist of
incremental fine-tuning within existing model architectures whereas more substantial changes
to the deployment domain may require changes to the architecture of the Al model. The latter
could result from a change in scope from medicines to vaccines, revisions of the underlying
medical terminologies or data structures, updated regulation or conventions and more.

Continual performance evaluation can be relevant regardless of whether an Al system
incorporates ML components or not. Its frequency should follow the risk-based approach
and may include data-driven safeguards to identify, for example, substantial data drift or
performance degradation. Such observations may trigger remedial actions that could
include additional evaluation, and possible retraining, stopping use of the algorithm and/
or introducing QC measures to maintain confidence in its results. In the case of dynamic
Al models continually fine-tuned or otherwise updated in (near) real-time after deployment,
automated detection of model drift may also trigger re-validation activities. Documentation
of activities and acceptance criteria for re-introducing Al solutions under such circumstances
may also be required. As an example, they may include known input/output pairs which are
checked each time an Al system undergoes a change, or mechanisms to guard against
automation bias.

One of the potential benefits of ML is the ability to improve performance through iterative
modifications, including by learning from RWD. To support this approach, the US FDA, Health
Canada, and Medicines and Healthcare products Regulatory Agency (MHRA) described a
“Predetermined Change Control Plan” for ML-enabled device software functions (ML-DSF).
Their general principles might conceivably be applied to Al systems in PV. A Predetermined
Change Control Plan generally includes: 1) a detailed description of the specific, planned
modifications; 2) the associated methodology to develop, validate, and implement those
modifications in a manner that ensures the continued acceptable performance of the algorithm;
and 3) an Impact Assessment of the benefits and risks of the planned modifications and risk
mitigations. The detailed description of the planned modification should include changes to
the characteristics and performance of the algorithm resulting from the implementation of the
modifications. An example of a modification might include retraining a ML model. A protocol
providing the details of the data and methods used to develop, evaluate, and implement
such a modification should be created and adhered to. An Impact Assessment of the
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modification should be carried out and risk mitigation measures developed to ensure that
any identified risks will be controlled. This approach should be further incorporated into the
quality management system (QMS) governing the PV process being modified.

There should be straightforward means to report issues or anomalies encountered, and these
should be addressed promptly, and escalated as appropriate. Ideally, the response would include
acknowledging receipt of feedback, providing updates on investigations, and implementing
necessary changes to the Al system.
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CHAPTER 6.
TRANSPARENCY

Principle

Transparency regarding Al involves disclosing information between organisations or
individuals. This includes sharing relevant documentation of the Al system lifecycle (i.e.
design, development, evaluation, deployment, operation, re-training, maintenance and
decommission) to facilitate traceability and providing stakeholders with enough information
to have a general understanding of the Al system, its use, risks, limitations, perceived
benefits, and impact on their rights.

Key messages

Declaring when and how Al systems are used for core PV tasks is critical for building
trust among domain experts, decision makers, regulatory authorities, and the public.

The nature of Al solutions deployed for core PV tasks should be sufficiently described,
including their model architectures, expected inputs and outputs, and the level and
type of human-computer interaction.

To give a clear picture of an Al model’s effectiveness and limitations in a PV application,
performance evaluation results for the specific task should be presented and describe
the scope and nature of the test set(s), including definitions of their reference standards
and sampling strategies.

Presented performance metrics should be relevant for the intended deployment
domain, compared with relevant benchmarks, and complemented by qualitative review
of representative examples of correct and incorrect output.

If possible, a description of the general principles and logic by which an Al model
functions and arrives at its outcomes / predictions should be shared. A lack of
explainability should be acknowledged and discussed.

6.1. Introduction

Transparency provides stakeholders with relevant information regarding the nature and
use of an Al system. It reflects what information is shared with key stakeholders by those
who develop or deploy it. The main purposes of transparency are to build trust, to enable
individuals and organisations not involved in their development to inspect and scrutinise the
design and performance of Al systems, and to ensure regulatory compliance.

As further elaborated on in the Chapter on Governance & Accountability, the primary direction
of transparency and disclosure of information varies during the phases of the Al system
lifecycle. For example, during the design phase the business owner should be transparent
toward developers regarding the specification and requirements for an Al system, whereas
in the pre-deployment phase developers should be transparent toward the business owner
regarding the nature and performance of an Al system. During routine use, the most important
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form of transparency may be from the organisation toward end users (and in some cases
regulatory authorities).

6.2. Disclosing use of artificial intelligence

It is essential to disclose why, when and how Al is being used in different PV tasks. This is
to maintain trust, awareness, and responsibility among stakeholders, including developers,
PV professionals and decision makers, regulatory authorities, HCPs, and patients. Confidence
scores and other metrics communicating the Al model’s certainty in a prediction or output
can be a valuable component of such disclosure. However, the validity and robustness of
such scores and metrics must also be ensured and their meaning clearly communicated
to end users.

Regulatory bodies require disclosure of Al use to assure compliance with applicable laws
and regulations. To this end, software vendors and internal development groups need to be
transparent toward PV organisations, who in turn need to be transparent toward regulatory
authorities. At the same time, those individuals who utilise Al solutions to process or analyse
PV data must be informed about the Al's role in their workflows to help them integrate Al
into their processes in an informed manner to support its effective application and ensure
that they can identify any issues arising from Al use.

PV professionals should also communicate the provenance of data elements and whether Al
solutions contributed to their capture or development. Human interpretation of PV data may
depend on how it was ascertained. For example, signal assessors may lend different weight
to a case narrative that was auto generated from structured elements compared with one
that documents the patients’ or health professionals’ verbatim description of the AE. There is
also a risk of a vicious circle where Al generated information is used as part of a reference
standard in subsequent Al model development, if its provenance is not properly disclosed.

6.3. Transparency regarding the artificial
intelligence model

Ensuring sufficient transparency of the Al models used in PV is critical to fostering trust,
facilitating informed decision making, and ensuring that these models are applied appropriately.
Ideally, transparency should be extended to also capture decisions made by PV professionals
resulting from the Al model. Model transparency is also an ethical imperative, ensuring that
all parties understand the systems they are working with and can make informed decisions
based on their outputs. Below are key aspects of an Al model that should be disclosed to
stakeholders. The rationale behind the design choices should also be explained, to help
ensure that the model is aligned with its intended use and stakeholder needs.



Table 3:

Key aspects of an artificial intelligence model to disclose

to stakeholders
Source: CIOMS Working Group XIV

Intended Use

The intended use of each Al model should be clearly defined and
communicated. This includes specifying the PV tasks the model is
designed to assist with or perform, such as adverse event recognition in
free text, signal detection, or case triage.

Human- The level and type of interaction between humans and the Al models

Computer should be communicated. This includes specifying whether the Al model

Interaction is executed autonomously, has a human in-the-loop or on-the-loop (and
what their required competence would be), or aims to provide decision
support to down-stream human specialists.

Model The type of Al model and its general architecture should be disclosed,

architecture

such as whether it is rule based, uses linear models, or specific types
of neural networks, or combines different ML models in an ensemble or
multi-agent system, etc. Additionally, relevant details about the model’s
structure, such as the type and depth of a neural network architecture,
should be shared.

Model
parameters

At a minimum, key predictors or features that drive the decisions of an
Al model should be disclosed, if they are known. If feasible, the full set
of model weights and parameters can be shared, to enable external
replication and external performance evaluation. For Al solutions based
on GenAl models, predefined prompts should be specified along with any
pre- or post-processing steps.

Explainability

If possible, a description of the general principles and logic by which
an Al model functions and arrives at its outcomes / predictions should
be shared, or the lack of explainability should be acknowledged and its
implications discussed. (See also Section on Explainability).

Training set

Details about the training set(s) based on which bespoke ML components
have been developed should be disclosed. This would include their size,
scope, annotation guidelines, quality assurance, and creation date, along
with reflections on how well they align with the intended deployment
domain and a justification for their use.

Standard Al
Components

If the Al model incorporates public standard components, such as pre-
trained ML models, libraries, or frameworks, or datasets, this should be
disclosed, including the specific versions used, date of access, and any
custom parameter settings.

Acceptable
Inputs

The types of inputs that the Al model expects should be specified.

This provides insights regarding the basis for the Al model's outputs
and ensures that it is only fed with data it is designed to handle, thereby
maintaining the accuracy and reliability of its outputs.

Type(s) of
Output

The types of output generated by the Al model should be described.
Examples may be risk scores, classifications, alerts, or free text, as well
as metrics conveying the Al model’s certainty regarding specific outputs.

Known
Limitations

Any known limitations regarding the nature of the Al model should be
communicated, including e.g. features or types of interactions, which it is
unable to account for, or known biases or under-served populations (See

Chapter on Fairness & Equity).
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To allow other developers and researchers to fully replicate an Al model and possibly even
modify it for further use, an organisation might choose to publish its full set of parameters
and weights or even share the source code. This level of openness supports peer review and
validation by external experts, which can enhance trust in the model’s reliability and foster
innovation. However, it will not always be feasible due to considerations regarding intellectual
property, competitive advantage, or the sheer complexity of large models. Moreover, for many
stakeholders, access to raw code and parameters of a complex Al model may not enhance
their understanding and will need to be complemented by the other measures for model
transparency described above. Understanding the rationale, assumptions, and subjective
decisions made in the implementation can be more important for gaining meaningful insights
into the model's function and effectiveness. For full scientific reproducibility, developers
may also need to share the relevant reference sets, at least those used for performance
evaluation. However, depending on the use case and stakeholders involved, this may conflict
with the data privacy principle.

6.4. Explainability

A specific form of transparency relates to disclosure of the general principles and logic by
which an Al solution operates and has arrived at a specific output. This may help nurture
trust, allow affected individuals to understand and influence outcomes, support down-stream
human decision making and facilitate human oversight and regulatory compliance. In this
context, explainability and interpretability are important concepts, which partly overlap.

The set of Guidelines on the testing of Al-based systems in the ISO standard for Software
testing in Software and systems engineering characterises explainability as a “level of
understanding how the Al-based system ... came up with a given result” and interpretability
to a “level of understanding how the underlying (Al) technology works”.!

Similarly, the Al Risk Management Framework of the US National Institutes of Standards and
Technology includes the following statement: “Explainability refers to a representation of the
mechanisms underlying Al systems’ operation, whereas interpretability refers to the meaning
of Al systems’ output in the context of their designed functional purposes”.2

The OECD Transparency and Explainability Principle 1.3 states:3

“Explainability means enabling people affected by the outcome of an Al system to understand
how it was arrived at. This entails providing easy-to-understand information to people affected
by an Al system’s outcome that can enable those adversely affected to challenge the outcome,
notably — to the extent practicable — the factors and logic that led to an outcome.”

For the context of this report, we adopt a similar perspective and use explainability in a
broader sense to reflect the degree to which humans can understand the factors and logic that
have led to a specific outcome or that play a role in the general operation of an Al solution.

Concrete examples which illustrate the role of explainability in different PV use cases are
provided in Appendix 3.



6.4.1. Benefits of explainability

Explainability can be beneficial because it may:

Nurture trust in an Al system, by enabling stakeholders to make sense of and
contextualise an Al solution’s output;

Allow individuals affected by an Al system’s output to challenge and influence
the outcome;

Support and speed up human decision-making which builds on or integrates an Al
system output;4°

Propose scientific hypotheses for consideration by end users - individual or combinations
of features such as drugs, diseases, and demographics that are included in the
proposed explanation of the findings may provide signals of adverse drug reactions,
and adverse drug-disease interactions worthy of evaluation, as well as potential
biological mechanisms of adverse drug reactions;é

Enable more complete documentation, audit, and human oversight of Al systems;

Contribute to regulatory compliance especially when it is possible to retain and
examine the human decision together with the Al output and the explanation upon
which the decision was based;

Facilitate troubleshooting by revealing issues such as possible biases or likely
spurious correlations;7.8

Contribute towards model assessment and selection by uncovering what is causing
different models trained on the same data to perform differently.

Referring to the definition above, the individuals who could challenge the output of the PV
Al system and require explainability are more likely to be stakeholders who are directly
involved in the PV process rather than members of the public.? They may range from the
PV and QA staff who are directly interacting with the Al, the developers who are building or
maintaining an Al system to the regulators who are inspecting it. Examples on how different
stakeholders in the PV process can benefit from explainability are provided in Appendix 4.

6.4.2. Inherent vs post hoc explainability

Al models of limited complexity may be inherently explainable, allowing the basis for their
output to be deduced from direct inspection of their model architectures and parameters.®
This is also referred to as ante-hoc explainability. Examples may include lower-dimensional
decision trees, rule-based classifiers, and regression models.

In contrast, a growing field of research seeks to obtain post-hoc explainability for more
opaque Al solutions, including deep neural networks with complex architectures and more
parameters than a human can survey or comprehend. With such approaches, a separate
layer of methods and techniques are applied on top of the Al solutionl0 to trace and explain
the basis for a specific, already generated output. Some post-hoc explainability approaches
seek to explain the output of complex Al models by estimating relative feature importance
and others do so by determining the minimal change in one or more features required to
change a given output. There are also methods that provide post-hoc explainability of a
specific output by fitting simpler, inherently interpretable models to the local context of a
specific output. For examples of specific methods in use at the time of writing this report,

please see Appendix 4.
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When a post-hoc method is used to gain explainability, it must itself comply to the applicable
regulatory requirements for computerised systems. In other words, the post-hoc explainability
method should be verified regarding its fitness for purpose and the process integrating such
methods must be validated. Post-hoc explanations offer an approximate understanding of
the relationship between the data and the predictions.11 The explanations can be imperfect
or incomplete and/or provide only a partial explanation.

Generative LLMs can be prompted to produce apparent rationales for their outputs. However,
such rationales are language artifacts that do not provide direct access to the model’s internal
computation and may merely be post-hoc rationalisations. For PV use, organisations may
prefer evidence-anchored justifications (explicit links to input spans or source documents)
over free-form ‘chain-of-thought,” and require faithfulness tests before accepting LLM-produced
rationales as part of the audit trail.

6.4.3. Challenges related to explainability

Stakeholders are advised to critically consider what type of explainability is required for the
intended use case, for whom, and for what purpose, and whether the Al system they are
considering can provide it, bearing in mind that explainability may not be an appropriate
goal for all Al solutions.12

The level of explainability of an Al solution’s output should not be the sole determining factor
for model selection. For example, applications like machine translation depend on the higher
capabilities and improved performance offered by deep neural networks and typically do not
require inherent explainability. A negative impact of limited explainability may be mitigated by
ensuring high transparency regarding other aspects of the Al system and its performance,
coupled with extra care to achieve validity and robustness and human oversight.13 At the same
time, it should not be assumed that explainability necessarily leads to lower performance
and that a trade-off between the two needs to be made.14

Similarly, while explainability of an Al model’s output can sometimes help identify issues with
validity and robustness or fairness and equity, explainability alone does not prove that the
system is fit for purpose, nor does it vouch for the trustworthiness of the system.15 It attempts
to clarify what factors led to a specific output but is not indicative of an Al model's general
performance or of its fairness and equity. For example, even if an inherently explainable Al
model does not include age as one of its explicit features, it could bias against an age group,
if this bias is mediated by other features. In fact, explanations may make stakeholders more
susceptible to overreliance on model outputs, so called automation bias.15 Also, explainability
is no guarantee of transparency — an organisation may, for example, choose not to disclose
the key features and inner logic of an inherently explainable model such as a decision tree.

Explainability is not the same for all stakeholders. What is understood by model developers
could be incomprehensible for other stakeholders? and explanations must be accessible
to people with a wide range of literacy and educational attainment-10 Since humans will
need to process and contextualise any explanations provided, they should also be informed
about and aware of their own possible biases and blind spots which may influence their
ability to leverage the explanations. Related to this, it should be noted that, in the worst
case, a plausible explanation for an incorrect Al output may increase the likelihood that it is
accepted without the appropriate critical review by some end users.



6.5. Transparency regarding performance

Transparency regarding an Al model’'s assessed performance of a specific PV task
communicates how well an Al model operates in practice and complements the insights
into the design, implementation, and decision-making processes provided through model
transparency. It provides a bridge between theoretical capability and practical utility. Without
a clear view of how an Al model behaves under realistic conditions, stakeholders cannot
fully assess its suitability for use or be confident in its robustness and validity. Performance
transparency ensures that all stakeholders, from end-users to regulatory authorities, have a
clear understanding of an Al model’s strengths, limitations, and expected behaviour in the
contexts where it will be deployed. This is particularly important in PV, where Al systems
support information processing and decision making, with the aim of safeguarding patient
safety and public health.

By recording and being able to share detailed performance evaluations with relevant
stakeholders, organisations offer clarity on the strengths and limitations of the Al system,
including quantitative metrics, qualitative examples, and comparisons to benchmarks. Thereby
organisations provide the necessary context to build trust and appropriate reliance on Al
systems. This transparency allows for informed decision making by PV professionals and
decision-makers, ensures that Al systems are used within their intended scope, and helps
identify areas where adaptations or special measures may be required. Additionally, it supports
continuous improvement by highlighting areas where the model may need further refinement
or retraining.

In support of this, there should exist clear documentation of the data used for performance
evaluation, including the rationale for its selection, how it was acquired, cleaned and
transformed, and any processes for managing missing or erroneous data.

Table 4 outlines relevant aspects to disclose to ensure transparency regarding the estimated
performance of an Almodel. For further elaboration, see the Chapter on Validity & Robustness.

Table 4: Relevant aspects to disclose to ensure transparency regarding the
estimated performance of an artificial intelligence model

Source: CIOMS Working Group XIV

Scope of Describe the nature of the reference sets used for performance
evaluation evaluation, acknowledging any known deviations from the intended
deployment domain (e.g. over- or under-representation of certain drugs,
adverse events, patient populations). Relevant information would include
the types of data and from where they have been derived.

Sampling Describe the prevalence of positive and negative controls in the reference
set and how this relates to the intended use. If they are different,
describe how performance evaluation was adjusted to account for this.
Describe any use of data augmentation for performance evaluation.

Reference Disclose the definitions of different categories of classification used in
standard performance evaluation (for example, positive and negative controls in
a binary classification task). Share any annotation guidelines used to
improve quality and consistency of human annotations in developing the

reference standard.
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Human input Describe the qualifications of human assessors contributing to test set
development and any use of parallel annotations and evaluations of
concordance during this phase. If the Al solution includes a human-in-the-
loop during operation, then state the qualifications of those individuals
who participated during performance evaluation.

Summary Present standard performance evaluation metrics when suitable
metrics or motivate the use of customised metrics. Place emphasis in this
presentation on levels of the decision threshold relevant to the intended
use and deployment domain (e.g. with a realistic balance between false
positives and false negatives). Complement composite performance
metrics with their components (e.g. precision and recall for an F-score).

>
(&)
o
()
S—
©
o
(%2}
o
©
}_
©
o
7]
[
o
<t
5
o

Benchmarks Present comparisons against relevant benchmark methods (including
human-level performance) and/or standard benchmark reference sets,
when available.

Subsets & Present the results of any subset or sensitivity analyses during
sensitivity performance evaluation or acknowledge the lack thereof.

analyses

Qualitative Provide representative examples of correct classifications and

review representative examples of incorrect classifications (false positives and

false negatives).
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CHAPTER 7.
DATA PRIVACY

Principle

Data privacy refers to the fundamental right of an individual to control how their personal
information is collected, stored, shared, and used. It is an aspect of the principle of “respect
for persons” that is foundational to the conduct of biomedical research. Legislation, regulations
and guidance documents provide certain measures intended to preserve the confidentiality,
anonymity, autonomy and control of sensitive and potentially personally identifiable health
data in the setting of PV.

Key messages

Application of Al in PV that may involve protected data should consider the standard
principles for research activities involving human subjects.

The use of Al applications in PV requires additional attention to ensure that appropriate
safeguards are in place to address data privacy requirements.

The applications of ethical principles most relevant for the use of Al in routine PV are
data privacy, fairness, and equity.

PV professionals should recognise that existing procedures used to assure regulatory
compliance may need to be re-evaluated due to the heightened risks of GenAl to
compromise data privacy and for ML to amplify biases.

/.1. Introduction

Although data privacy has been recognised as an implicit legal right for well over a century,!
it was not until the 1970’s that this topic began to receive formal international attention.
Advances in computer technology began to facilitate the large-scale collection, organisation,
and evaluation of amounts of data that had previously relied upon paperwork. In the absence
of any laws regulating how public bodies could collect, store, or share personal data, the first
data privacy law was passed in 1970.2 In the US, public concerns about the potential
misuse of collected data led to the US Privacy Act (1974),3 which established a code of fair
information practices that governs the collection, maintenance, use, and dissemination of
information about individuals that is maintained in systems of records by federal agencies.
These same issues raised concerns about transfer of large amounts of personal data across
borders, which led to the first international guidelines to protect data privacy in the context
of international trade.# Similar to this CIOMS Working Group report, the OECD guidelines
laid out a set of core principles; however, its intent was to assist governments, business
and consumer representatives with the objective of supporting data transfer to facilitate
commerce while protecting personal data privacy. Over the following decades, the guidelines
have influenced many subsequent data protection regulations/laws, such as the Health
Insurance Portability and Accountability Act of 1996 (HIPAA), Pub. L. 104-191, 110 Stat.
1936 and General Data Protection Regulation (GDPR) 2016, both of which are discussed
later in this chapter. As noted in Appendix 2, considerations to protect data privacy are
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specifically identified in a survey of recent major national and international reports on the
use of Al, generally and in pharmaceutical development.

/.2. Ethical considerations

While data privacy concerns are widely recognised in the use of Al, at the time of publication,
there has been limited attention paid to specific ethical considerations applied to the use of Al
in PV.5 Many publications that refer to ethics and Al, such as the WHO Guidance, Ethics and
Governance of Artificial Intelligence for Health,6 emphasise several basic principles that were
first elaborated in the Belmont Report (1979).7 The Report was designed to provide an ethical
framework for clinical and behavioural research; however, it has subsequently been applied
to certain PV activities (acknowledging that most PV is not typically considered research).

The Belmont Report identified three basic principles that are foundational to interventional
and behavioural research involving human participants: respect for persons; beneficence;
and justice.

Respect for persons refers to the obligation that individuals are free to decide whether
to participate in research. In clinical research, informed consent is recognised as one
application of this principle. In the setting of PV, the principle may be applied to data privacy
and the right to control one’s personal information (acknowledging that for the purpose
of PV, statutes may infringe). Beneficence emphasises that research should be designed
and conducted to maximise benefits and minimise harm to participants. As applied to PV,
this principle is captured in ongoing benefit-risk assessment. Justice focuses upon fairness
and non-discrimination. In PV, justice can be applied as fairness and equity, i.e. that the
benefits of PV knowledge be distributed equitably across populations.

The Report’s original intent was to establish universal principles applicable to clinical and
behavioural research, not to address public health activities. In the succeeding decades,
as certain areas in public health have expanded (e.g. through access to data and associated
research methods that were unavailable in the 1970’s), its principles have been applied to
areas such as disease surveillance and PV. As an example, post-authorisation safety studies
are often required as a condition of product licensure and may use RWD sources to generate
real-world evidence (RWE). The report of the CIOMS Working Group Xlll is on Real-World Data
and Real-World Evidence in Regulatory Decision Making.8

As applied to Al applications in PV (e.g. training and validity testing, and generalisability),
data privacy (drawn from Respect for Persons®) and fairness and equity (drawn from Justice®)
are particularly relevant for ethical considerations. Fairness in PV requires non-discriminatory
practices, ensuring that findings are representative of the population exposed to a product,
and equity is essential to ensure that PV benefits are shared broadly, a topic explored further
in the following chapter.

Many countries have established laws to protect the data privacy rights of the individual.
These laws share the common principle that personal data requires protection, and that
this should be accomplished through mechanisms that mitigate risk to the individual while
requiring accountability of the entity using the data. Two of the most frequently cited are the
1996 HIPAA Pub. L. 104-191, 110 Stat. 1936, used in the United States, and the GDPR,
2016, which is employed in the European Union (EU). These examples will be used to illustrate



commonalities and differences between data privacy regulations, and their implications for
the application of Al to PV.

Example: Health Insurance Portability and Accountability Act

As the name suggests, HIPAA (1996) originally focused on health insurance data® and was
developed to ensure data privacy during the transition of medical information from analogy
to digital. HIPAA also introduced administrative standards for health care data to improve
efficiency in the health care industry. In short order, the rapid adoption of digital technologies
in health care (e.g. EHRs) and the interest in using electronic data for research and other
purposes led to additional regulations to support the use of EHRs according to standards
that would ensure administrative efficiency while protecting patient privacy and security
(HIPAA Privacy Rule, 2000; Security Rule, 2003; Health Technology for Economic and Clinical
Health [HiTech] Act Breach Notification Rule, 2009). The HIPAA Privacy rule addresses the
use and disclosure of individuals’ health information, called protected health information (PHI),
by organisations subject to the Privacy Rule, called “covered entities”, as well as standards
for individuals’ privacy rights to understand and control how their health information is used.
A major goal of the Privacy Rule is to assure that individuals’ health information is properly
protected while allowing the flow of health information needed to provide and promote high
quality health care and to protect the public’s health and wellbeing.

HIPAA emphasises the confidentiality, integrity and availability of health data, and requires regulated
entities to make reasonable efforts to limit the use, disclosure of, and requests for PHI to the
minimum necessary amount to accomplish a particular purpose. It specifies patients’ rights to
access and amend PHI. To protect patient confidentiality, HIPAA recognises types of data that
could be used to identify individuals and specifies 18 unique PHI identifiers. The list underscores
the range of common data types that are largely unrelated to health care and which contain
identifiable information that could compromise patient identity: name(s), geographic subdivisions
smaller than a state, dates (except year, e.g. date of birth), telephone numbers, fax numbers, email
addresses, social security numbers, medical record numbers, health plan beneficiary number,
account numbers, certificate/license numbers, vehicle identifiers, device identifiers, web URLs,
internet protocol (IP) addresses, biometric identifiers (e.g. fingerprints); full face photographs,
as well as any other unique identifier that could be used to trace the identify of an individual.
Once these identifiers are stripped from a source record, the record can be used or disclosed
without restrictions imposed by HIPAA as the record no longer contains PHI.

Public health often balances societal interest with personal rights. Based on overriding
societal needs for the safety, effectiveness, and quality of medicinal products approved for
use in the US, routine PV activities conducted by application holders are typically exempt
from certain HIPAA requirements for patient authorisation to disclose and use PHI. Medicinal
products are governed in the US FDA regulations that require, among other things, monitoring
the quality and safety of US FDA-regulated products, which is conducted in part through
AE reporting, product tracking, recalls, and post-marketing surveillance. While certain PV
activities are exempt from certain HIPAA requirements, data privacy protections remain,
including: use of the minimum necessary data standard (collecting only data essential to
fulfil the PV responsibility), de-identification and/or anonymisation of data (employed where
possible); use of technical, administrative, and physical safeguards to prevent unauthorised
access, use, and disclosure of PHI; and requirements for Business Associate Agreements
(where vendors or partners are engaged by a covered entity). Within the US, the US FDA and
Centers for Disease Control and Prevention (CDC, Atlanta) are responsible for public health
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matters as part of their official mandate. Among its responsibilities, the US FDA is responsible
for “protecting the public health by assuring the safety, efficacy, and security of human and
veterinary drugs, biological products, medical devices ...". The CDC responsibilities include
protecting “America from health, safety and security threats, both foreign and in the U.S.”,
including whether diseases are chronic or acute, curable or preventable. This is accomplished
in part by conducting “critical science and providing health information that protects (the
US) against expensive and dangerous health threats”. The Privacy Rule permits covered
entities to disclose PHI, without authorisation, to public health authorities that are legally
authorised to receive such reports for the purpose of preventing or controlling disease,
injury, or disability. Covered entities are generally required to reasonably limit disclosures of
PHI made without individual authorisation for public health activities to the minimum amount
necessary to accomplish the public health purpose.10

In contrast to public health authorities and the private sector, academic involvement in PV
is generally conducted as a research activity, e.g. Post-Approval Safety Studies (PASS),
and are subject to different oversight, including the use of institutional review boards (IRBs,
aka ethical review boards) to assure that studies meet appropriate ethical standards, and are
to mitigate data privacy concerns, including data use agreements, where applicable when
collaborating with other organisations. This includes the use of de-identified and limited data
sets, and compliance with both HIPAA and the Common Rule (45 CFR 46, Subpart A — HHS
Policy for Protection of Human Subjects, which governs the ethical conduct of research
involving human subjects), along with other applicable requirements.

Example: General Data Protection Regulation

The GDPR (Regulation [EU] 2016/679) is a comprehensive regulation overseeing personal
data protection in the EU and succeeds the earlier Data Protection Directive (Directive
95/46/EC), which was issued contemporaneously with HIPAA, at the dawn of the internet
age. The scope of the GDPR is much broader than HIPAA as it pertains to the use of personal
data affecting all manner of human interaction, including processing by automated means
as well, and stems from the 1950 European Convention on Human Rights: “Everyone has
the right to respect for his private and family life, his home and his correspondence”.11

The GDPR incorporates principles such as lawfulness, fairness, transparency, accuracy
and integrity, purpose limitation, data minimisation, confidentiality, and storage limitation.
Compliance is a major feature of the GDPR with organisations such as pharmaceutical
companies required to have a Data Protection Officer responsible for overseeing compliance.
Penalties for non-compliance may be significantly greater than those under HIPAA, with fines
up to 4% of global turnover.

Several safeguard measures may be used to help ensure data privacy, such as data
encryption (preventing access without a decryption key), anonymisation (where possible)
or pseudonymisation (replacing identifiable information with pseudonyms to mask identity),
and use of Data Protection Impact Assessments to identify and mitigate risks in data
processing to protect the individual. In contrast to HIPAA, GDPR incorporates a “right to be
forgotten”, permitting individuals to request deletion of their personal data. In the case of
special categories of personal data, such as health data, explicit consent may be required
for data processing under GDPR and, where collected, such consent may be revocable.

Similar to HIPAA, the rules of the GDPR allow for pharmaceutical companies to meet their
legal obligations to conduct PV activities, monitor and report AEs without consent in order to



ensure oversight of the safety and effectiveness of medicinal products — provided that certain
safeguards are in place (and subject to the individual laws of the respective member states).
These responsibilities may limit data protection rights normally in place under the GDPR,
e.g. the “right to be forgotten”. Other safeguards include requirements for data minimisation
as well as administrative, technical and organisational measures to protect personal data.

In fulfilling its responsibilities to assure the safety, effectiveness, and quality of medicinal
products authorised for use in the EU, the EMA is empowered to assure PV oversight in
a manner that acknowledges that certain data protection rights, such as the right to be
forgotten, may be limited for specific PV activities. The EMA emphasises the principles
of data minimisation, purpose limitation, lawfulness, fairness and transparency in its data
use. The GDPR has special provisions for international data transfers, imposing restrictions
in exporting data collected for EU citizens (regardless of domicile) outside the European
Economic Area (EEA) and applies safeguards to provide an appropriate level of data protection.

Data privacy expectations for PV research conducted by academia in the EU are analogous to
those for the US, with IRB or Independent Ethics Committee (IEC) oversight and an emphasis
upon adherence to principles of data minimisation and purpose limitation. Additionally,
international collaborations that involve data transfers outside of the EEA require safeguards
that typically include contractual language to assure compliance with GDPR rules.

7.2.1. Other data privacy laws regulations

Although the US FDA and EMA data privacy regulations are currently the most widely followed,
it should be noted that there is an increasing number of country-specific differences, which
pose particular challenges for the use of multinational Al model development involving
the secondary use of data. Comparison of regulations in place in Brazil, China, Germany,
and Japan illustrates this point.

Table 5: Data privacy regulations for secondary use of data in Brazil
Source: CIOMS Working Group XIV

Aspect Brazil

Governing Law General Data Protection Law (Lei Geral de Protecao de Dados,
LGPD), Law No. 13.709/2018

Health Data Sensitive personal data includes health data; additional safeguards

Classification for children and adolescents

Consent Requirements | Consent required in principle; exceptions allowed (e.g. legal/
(Research & PV) regulatory obligations, implementation of public policies,
protection of health, and research by authorised institutions)

Secondary Use of Permitted when justified by legal bases (e.g. regulatory

Data (e.g. RWE) obligations, public policies, health protection, or research);
ANVISA’s regulatory activities exempt from consent

De-identification Anonymisation and pseudonymisation encouraged to reduce

Standards reliance on consent; focus on transparency, purpose limitation,
and data minimisation

Cross-border Data Applies to processing of personal data of individuals in Brazil

Transfer regardless of processor location; international transfers permitted

if LGPD requirements and safeguards are met
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Aspect Brazil

Pharmacovigilance
Exemptions

Adverse event reports and technical complaints handled by
ANVISA without consent under regulatory/legal obligations and
health protection grounds

Regulator Guidance on
Biomedical Use

LGPD implemented nationally; ANVISA Ordinance No. 1,184/2023
establishes Personal Data Protection Policy (including inventories,
security measures, impact reports, contracts compliance,

and data protection culture)

Oversight Body

National Data Protection Authority (ANPD); implementation in
health sector by ANVISA

Key References

LGPD, Law N°13.709 (2018);12 ANPD regulations;13 ANVISA
Ordinance No. 1,184/202314

Table 6:

Data privacy regulations for using secondary data in China

Source: CIOMS Working Group XIV

Aspect China

Governing Law

Personal Information Protection Law of the People’s Republic of
China (PIPL); Data Security Law of the People’s Republic of China,
Cyber Security Law of the People’s Republic of China.

Health Data
Classification

“Sensitive personal information”

Consent Requirements
(Research & PV)

Explicit consent generally required; strict interpretation

Secondary Use of
Data (e.g. RWE)

Permitted with new consent or proper anonymisation

Cross-border Data
Transfer

Strict rules: security assessments, contracts, individual consent;
limited adequacy

Pharmacovigilance
Exemptions

AE reporting permitted but must minimise identifiable data

Regulator Guidance on
Biomedical Use

PIPL + draft health data governance rules; evolving

Oversight Body

Cyberspace Administration of China (CAC) (oversees cybersecurity
and data protection) and National Health Commission (regulatory
authority establishes and implements standards for medical and
health data)

ARTIFICIAL INTELLIGENCE IN PHARMACOVIGILANCE




Aspect China

Key References

PIPL (2021);15 CAC draft regulations on health data;16 State
Council health data measures (2022)17; Data Security Law of
the People’s Republic of China;18 Cyber Security Law of the
People’s Republic of China;19 Regulation on Network Data
Security Management;20 Measures for the Security Assessment
of Outbound Data Transfer;23 Provisions on Promoting and
Regulating Cross-border Data Flows;21 Law of the People’s
Republic of China on Basic Medical and Health Care and the
Promotion of Health;22 Regulation of the People’s Republic of
China on the Administration of Human Genetic Resources:23
Measures for the Standard Contract for the Outbound Transfer of
Personal Information.24

Table 7:

Data privacy regulations for secondary use of data in Germany

Source: CIOMS Working Group XIV

Aspect Germany

Governing Law

General Data Protection Regulation (GDPR) (EU-wide), Federal Data
Protection Act (BDSG) (Germany)

Health Data
Classification

“Special category data” (Art. 9 GDPR)

Consent Requirements
(Research & PV)

Usually required; exceptions for public interest (e.g. PV, RWE)

Secondary Use of
Data (e.g. RWE)

Allowed if legal basis exists (public health, scientific research,
etc.) with safeguards

De-identification
Standards

Pseudonymisation encouraged; full anonymisation for broader
reuse

Cross-border Data
Transfer

Allowed to countries with adequacy or with SCCs/ Binding
Corporate Rules (BCRs)

Pharmacovigilance
Exemptions

Explicitly exempt from consent under public health/legal obligation

Regulator Guidance on
Biomedical Use

Extensive EMA and national ethics bodies guidance

Oversight Body

German DPAs and European Data Protection Board (EDPB)

Key References

GDPR (Regulation EU 2016/679); EDPB Guidelines 03/2020;
EMA Module VI (GVP); BDSG (Germany)
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Table 8:

Data privacy regulations for secondary use of data in Japan

Source: CIOMS Working Group XIV

Aspect Japan

Governing Law

Act on the Protection of Personal Information (APPI)

Health Data
Classification

“Special care-required personal information”

Consent Requirements
(Research & PV)

Consent generally required, but pseudonymised data may be used
for public interest or research

Secondary Use of
Data (e.g. RWE)

Allowed with pseudonymisation/anonymisation and research
purpose declaration

De-identification
Standards

Recognises both anonymised and pseudonymised data; latter still
regulated

Cross-border Data
Transfer

Permitted to “adequate” countries (EU, UK); otherwise, consent or
contracts needed

Pharmacovigilance
Exemptions

AE reporting allowed without consent under regulatory mandate

Regulator Guidance on
Biomedical Use

MHLW guidance on clinical research and PV under APPI

Oversight Body

Personal Information Protection Commission (PPC)

Key References

APPI (2020 amendment);25 Act on Anonymized Medical Data That

Are Meant to Contribute to Research and Development in the
Medical Field;26 PPC Guidelines;27 MHLW guidance on GPSP and
human research ethics28

/.3. Practical considerations to support data
privacy

As these examples indicate, there are regulations that support appropriate data privacy within
the framework required to conduct routine PV activities. The list of 18 unique identifiers
enumerated by HIPAA highlights the breadth of the types of data that can be used to identify
individuals. In the years following the introduction of HIPAA and the GDPR, there has been
recognition that additional measures may be required to anonymise data.

As a regulated industry, pharmaceutical companies must comply with the data privacy
and reporting requirements of all countries in which their products are approved. As an
example, the EMA requires adherence to GVP and to data protection principles from the
GDPR. Ensuring compliance requires attention to evolving country-specific regulations,
the oversight of vendors that support companies (in some cases conducting certain PV
activities for individual companies) as well as business partnerships, e.g. where a combination
therapy is co-developed by more than one company. Regulatory authorities may have
different requirements for reporting patient information, necessitating some customisation



and additional oversight to assure adherence to local requirements. For example, Australia
requires reporting of ethnicity (to support fairness/equity), while it is prohibited in France
out of concerns of discrimination.

To support compliance with global data privacy requirements, contractual arrangements with
third parties (e.g. vendors, partners) include privacy-specific provisions and language. In the
US, contractual arrangements with vendors/partners by a covered entity require Business
Associate Agreements. Under GDPR, BCRs may be implemented to enable multinational
companies to move personal data within their companies across borders; BCRs are legally
binding and require approval from EU authorities. In the EU, an additional layer of oversight
is imposed through the required use of in-house data privacy officers for certain businesses
such as pharmaceutical companies. Globally, there is a range of potential consequences for
data breaches, from requirements for notification to data protection authorities up to and
including significant fines and penalties.

7.3.1. Risks to maintaining data privacy as artificial intelligence
Is employed in pharmacovigilance

One of the promises of Al is that it will permit more efficient processing of large amounts
of routine PV data, e.g. ICSRs. Additionally, LLMs, whether open or closed, permit nearly
instantaneous planned (or unplanned) linking of data sources that would otherwise not have
occurred, or would have been difficult to accomplish. As discussed below, these risks are
substantively greater for open vs closed LLMs. GenAl models are also useful for extrapolation
— finding patterns that might otherwise not have been recognised. These attributes raise
the question of whether current data privacy tools are sufficient to prevent re-identification
of de-identified data.

Adequacy of de-identification measures

In 1990 (six years prior to HIPAA), a US researcher used census data to identify 87% of the
US population based on three readily available data elements: five-digit mailing (zip) code, sex,
and date of birth, illustrating that few data points were needed to uniquely identify individuals.29
Though mailing codes were subsequently classified as PHI under HIPAA, the point remains
that just a few generally accessible data points may be needed to compromise data privacy.

A study using data from a children’s hospital in Ontario, Canada, demonstrated that the risk
of re-identification of individuals based upon de-identified pharmacy data could be minimised,
or even eliminated, by reducing the precision of values in selected data elements, such as
replacing the admission and discharge dates with the quarter and year of admission.
However, the maximum amount of acceptable generalisation in the data element values
must be determined by formally examining not only the risk of re-identification and breach
of patient privacy but also the intended analysis, which may not be conducted without the
appropriate level of precision.30

The EMA and Health Canada now require public sharing of clinical trial reports as part of
the drug approval process. Standards for data anonymisation have been issued. Applying
these standards, researchers evaluated the risk of re-identification associated with a clinical
study report for a nonsteroidal anti-inflammatory drug, grading suspected cases based on
the likelihood of accurate matching.3! The authors found six suspected matches out of 500
reviewed cases and observed that identifying the matches was time-consuming (24.2 hours
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per case). Re-identification was best informed by social media and death records, although
it was uncertain if the re-identification had been successful. Based on the <0.09 probability
risk threshold of re-identification established by EMA32 and accepted by Health Canada,
the authors concluded that existing anonymisation guidance was sufficient to provide an
adequate level of data protection (defined as non-zero, but a small number of low confidence
re-identifications); however, they also observed that the findings may not apply to studies
of rare diseases, nor to studies that employ qualitative rather than quantitative methods for
anonymisation. With rapid advances in Al, the time required to replicate the re-identification
exercise reported in that study (published in 2020) will likely have decreased by the date of
this report and will continue to do so.

Risks of data breaches

The potential consequences of re-identification of de-identified data are amplified by
numerous examples of data breaches that have occurred throughout the world. Today’s Al
is advancing rapidly and risks for re-identification will only increase as Al methods become
more sophisticated. A few examples illustrate the breadth of some recent data breaches
(when Al was not as advanced as currently), along with their potential consequences.

A purposeful attack on a US financial firm leading to access of more than 100 million
customer accounts and credit card applications.33

An apparently politically motivated international attack by a foreign government on
a credit reporting agency in the US resulting in the release of names, birth dates,
and social security numbers of nearly half of the US population, purportedly with the
intent of using Al to compromise US government officials.34

A purposeful domestic data breach intended to embarrass a political opponent,
involving a cyber-attack on an Asian health care plan that resulted in 1.5 million
patient records.35

An unintentional release of Indian government biometric, and other personal data, in a
database containing records of 1.2 billion individuals.36 In this instance, a criminal
group exploited the data breach and offered individual patient records for sale.
Approximately 100,000 persons are known to have had their data accessed.

Each example occurred before the widespread use of GenAl, a technology that has been
advancing rapidly, and which has the potential to efficiently link publicly available data
sources with those obtained maliciously, leading to enhanced risk for re-identification and
compromising data privacy.

Individual responsibility to protect personal data

In addition to processes to ensure data privacy to conform to data privacy regulations,
individuals play a role in protecting their own data. This responsibility grows in importance
with the ever-increasing number of digital tools (e.g. Smartphones, wearables), apps,
and software (e.g. Al-assisted translation tools, GenAl) that provide opportunities for individuals
to disclose personal data that may not be sufficiently protected. In many instances, there are
legal requirements to support an individual's data privacy (e.g. through the GDPR); however,
there remain opportunities for lapses in data privacy, and these are particularly worrisome in
the use of GenAl. Common mechanisms to advise persons of data use policies may include
terms of use (e.g. End User Licensing Agreements — aka EULA), data privacy notices, and,
in some instances, the requirement of explicit consent for use of personal data. Individuals



may share personal data (e.g. names, phone numbers), when submitting queries without
understanding the consequences of disclosing such information. In many instances, notably
those using open GenAl tools, these data may no longer be private. Individuals may share
context-specific information, such as a recent illness (or as in a noted example, a motor
vehicle accident) that might be used to identify them.37 Users may also unintentionally
provide personal identifying information by sharing (e.g. in social media) context-specific
data outputted by GenAl. These data may subsequently be leveraged to identify the individual
even if personal data was not directly entered depending upon the data privacy policies of
the respective platform. As GenAl is rapidly evolving, regulations to safeguard data privacy
in GenAl will need to evolve as well.

Potential risks to data privacy using Large Language Models in pharmacovigilance,
and approaches for mitigation

In principle, existing data privacy regulations, (or legislation, such as the GDPR), should
provide the basis for protection of data used in Al applications to PV. Model development
may require the use of PV data (such as ICSRs) to data scientists and ML engineers for
training as well as execution. All involved parties, which may include both pharmaceutical
companies and vendors, may have access to data that is protected, creating the risk for
exposure to larger groups. All parties should be aware of data privacy requirements. The risk
is potentially greater with LLMs, as the underlying mechanism of these models provides the
potential for some re-identification that would otherwise be unlikely. Those organisations that
maintain closed LLMs may exercise control of prompts as well as the data contained in the
models. Open LLM models lack this safeguard thereby increasing the risk for re-identification,
as these models have access to diverse sources of data that are not necessarily within
the purview of data privacy regulations (for example, containing the sort of data described
above under Individual responsibility to protect personal data). Leaks may occur through
prompts that bypass data privacy considerations or through models that are trained on
personal data. Additionally, as noted above, re-identification can occur even with data that
have been presumed de-identified (e.g. where postal code, birth date, gender, ethnicity have
been retained). PV requires review of potentially identifiable and sensitive information that
includes basic demographics (including birth date) associated with sensitive data elements
including medical or health information (including medicine and vaccine exposure), ethnicity,
race, sexual orientation, genetic information, biometric data, physical characteristics, lifestyle
information, etc., requiring heightened safeguarding measures.

Among the types of challenges posed by GenAl (as well as in some cases ML) for PV are
the following.

Algorithms may be developed within open LLMs, without attentiveness to applicable
data privacy requirements, thereby posing a potential privacy risk. If these LLMs are
then adopted for use within closed LLMs, there is the potential risk for disclosure of
protected information.

Within a closed LLM, attention should be paid to different sources that may be added
to the LLM for unrelated purposes. If genetic data has been collected (with participant
consent) for a study and is added to a LLM for a specific analysis, measures would
need to be taken to ensure that it is not used for a different purpose outside of the
original consent. The accepted practice is to seek consent for additional uses of
those data (as the data would now be part of the LLM) or ensuring suitable controls
(e.g. access controls, monitoring of inputs and outputs to mitigate data leaks).38.39
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GenAl programs can integrate otherwise discrete data sources such as census and
vital statistics and public health data, which may be linked to a de-identified health
record data set (e.g. in the setting of an active PV activity e.g. a post-authorisation
safety study) leading to the possibility of re-identification.

Other privacy risks may include: (i) data persistence (i.e. data being retained within
the Al system and never deleted once retention time has lapsed); (ii) complexity of
upholding data subject rights, such as access right if an Al system was trained on a
dataset that the system no longer holds as such; and (iii) transparency: when a model
is trained through data scraping (e.g. on the web) without a data subjects’ knowledge.

Individual use cases of GenAl/Al must comply with local and relevant globally applicable
legislation. Risks are amplified in settings where data privacy regulations are lax or poorly
enforced. LLMs that are smaller and introduced earlier have tended to have more scrutiny
for data privacy than larger and more recent LLMs (see Figure 5). Reasons may include: 1)
lack of public availability of newer, larger LLMs; and 2) privacy technologies have struggled
to keep up with these newer, larger LLMs.

Figure 5: State of research on privacy protection for Large Language
Models (as of June 2025)

Source: Modified from Yan B et al 202540
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The timeline axis represents the release time of LLMs, while the vertical axis indicates the size of parameters.
Blue data points represent LLMs that have received limited attention in the literature on privacy protection, while
black data points signify models that have been studied alongside privacy concerns. The green background draws
attention to the central cluster of LLMs that could help boost privacy protection. At the time of publication of the
article, recently introduced larger LLMs had not been as fully evaluated in the scientific literature with respect to
data privacy as earlier, smaller models.265

/.4. Conclusions

The right to data privacy resides within the well-established framework of basic ethical principles
for human research protection articulated in the Belmont Report. National regulatory authorities
have provided requirements intended to protect data privacy, indicating the types of data that
can be made available, along with safeguards (such as data minimisation, anonymisation,
de-identification and data encryption) along with potential penalties for non-compliance.



Despite data privacy laws and the increasing sophistication of technical measures employed
by companies entrusted with personal information, attempted and successful data breaches
have been occurring with increasing frequency and often at enormous scale (affecting in
some cases >100 million individuals), suggesting both failures in oversight along with
technical advances to outwit cybersecurity measures and break into secure data sources.

Ever-increasing computational power, larger linked databases, and the introduction of
GenAl, are occurring in parallel with an increasingly globalised PV landscape involving more
numerous and complex interdependencies (e.g. business partnerships, international vendors
conducting PV activities). The ongoing challenge for PV professionals, regulatory agencies,
industry, as well as PV organisations and academia will be to assure that within this rapidly
evolving data science landscape, data privacy measures are monitored and regularly updated
to properly protect personal data.

A potential risk in applying GenAl for PV is patient re-identification, suggesting a need to
reconsider the specificity of de-identified data, along with risks associated with open LLMs
in which some data sources may be outside the control of the user.

In addition to having existing data privacy policies in place and adhering to data privacy
regulations, efforts to mitigate risks to data privacy when applying Al to PV may include
the below.

Recognition that the technology is advancing rapidly, requiring ongoing monitoring,
e.g. to assure that data de-identification measures are adequate.

Attentiveness to policies that may be introduced by GenAl firms to mitigate the risk
of re-identification.41

Legislation may also impose criteria for GenAl models intended to mitigate
systemic risks.42,43

On-premise or private cloud deployment, advanced anonymisation techniques,
federated learning architectures, differential privacy methods, and comprehensive
contractual safeguards governing data handling, retention, and cross-border transfer
with Al service providers.

Understanding that open and closed LLMs pose somewhat different challenges to
data privacy. Operating closed LLMs in safeguarded environments within institutional
firewalls and carefully examining the risks of sharing these models with third parties
should be helpful in risk mitigation.

Audits to evaluate whether only the minimum required personal information is included
in reports, that any re-use of data for secondary purposes is consistent with the
purposes for which that data was collected and that adequate measures are in
place to support compliance with data protection requirements by all entities (e.g.
vendors) contributing to PV. Insofar as PV activities may be conducted by a network
of collaborating organisations, the organisation with the weakest oversight of data
privacy may present a risk.

Oversight regarding access to LLMs for PV practices to assure that use by trained
PV professionals is fit for purpose.
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CHAPTER 8.
FAIRNESS & EQUITY

Principle

Fairness and equity require awareness of and adherence to impartiality, equality, non-
discrimination, diversity, justice, and lawfulness. The benefits of Al in PV should be equitable
across all relevant populations and groups. Throughout the Al lifecycle, it is important to
avoid and mitigate unfair bias, any discriminatory practices and unjust social wellbeing and
environmental impacts.

Key Messages

Consider the development and application of Al impacting fairness and equity, whose
lack or imbalance may result in discriminatory harm to subpopulations underserved
by an Al solution, explicit biases resulting in negative impact, or impact performance
by providing inaccurate results.

Plan and implement mitigation strategies when possible for areas where bias may
be introduced reducing potential underperformance; avoid discriminatory harm to
underserved populations.

Equity may be advanced by taking measures (e.g. assess for representative data sets)
to assure that Al applications to PV result in outputs (e.g. assessments, aggregated
data outputs used for product safety assessments) that are relevant to populations
anticipated to have exposure to the specific medicinal product being evaluated.

Screening and identifying explicit or potential bias using appropriate statistical
methodologies when possible is key to implementing mitigation measures to reduce
risk, determining Al applicability and limitations, and establishing expected performance
acceptance criteria.

Scrutinise training and performance evaluation reference data sets for adequate
representation and evaluate performance in relevant subgroups when possible.
Inadequate reference data is often the cause of inadequate fairness and equity.

Fairness and equity in ICSRs remain limited due to the known limitations of spontaneous
reporting systems, with some countries reporting significantly more than others
and providing more contextual data for analysis, such as RWD. Consequently,
our understanding of routine usage is often limited among underserved populations.

8.1. Introduction

In the context of PV, adherence to established laws and regulations such as privacy laws
and PV regulations must remain intact with the introduction of Al. What has changed is the
increasing awareness of the need for consideration, governance, and mitigation of potential
factors that may influence or impact fairness and equity to various degrees depending on
the type of technology, data source and application of Al.
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Not all fairness and equity concepts, considerations or negative consequences associated
with the use of Al will be uniquely specific to PV. Fairness and equity considerations are
challenging and can be influenced by cultural differences, historical inequalities, perceptions,
socio-economic differences etc., and may appear subjective. That does not negate the need
to address these considerations. To limit bias, intentional actions are required throughout
the Al lifecycle, from concept and design through implementation, and while in production,
to reduce discriminatory risk.!

Biases within Al solutions is a general problem which may impact performance, and not all
forms of statistical bias will result in a negative impact on fairness and equity. Within PV,
the focus will be regarding unfair bias introduced through data collection, selection, model
development and human involvement in the design, development and use of Al that could
potentially result in unfairness, discrimination, or inequality.

This chapter will not address the impact of development and use of Al on justice and
lawfulness, on individuals’ access to essential services, lack of public resources for
financing and implementing Al systems and the required ecosystem, and impact on social
well-being, because while these are important issues, they are not unique to PV. While not
unique to PV, access to Al and the required ecosystem can be a significant barrier for
low- and middle-income countries that can result in inequality and underserved populations.
Potential workforce implications with introduction of Al in PV will not be addressed here as
it is discussed in the Chapter on Human Oversight under the Section on Transformation
of traditional roles. In addition, the rapid acceleration in the use of Al, including GenAl is
associated with significantly increased energy demand and environmental consequences,
both of which are acknowledged as having a broad societal impact, but which are beyond
the scope of this report.2

8.2. Fairness and equity considerations and
pharmacovigilance

Fairness and equity principles are fundamental in identifying and addressing discriminatory
biases arising from the use of Al systems. In PV, proactive measures are essential to detect,
assess, understand and prevent adverse effects to ensure safe and effective use of medicines.3
When utilising Al solutions in PV, it is essential to implement proactive strategies to mitigate
potential harm caused by Al systems that are being developed for high-risk PV activities.

Thorough evaluation and ongoing monitoring are required throughout the Al system lifecycle
to identify and quantify potential areas of risk and mechanisms through which bias may be
introduced as a means to define strategies to mitigate discrimination biases arising from the
use of Al systems in PV. Monitoring for biases is required from conception, development,
testing, and following solution deployment. The frequency of monitoring for bias and
appropriate modification needs to be defined based on risk assessment, solution results,
and potential external factors that may impact model bias and performance.

It is crucial to acknowledge the possibility of bias that may lead to unfair practices or
unequal treatment of patients when using Al in activities related to detecting, collecting,
assessing, monitoring, understanding, and preventing adverse effects or any issues related
to medicinal products.



The PV organisation applying Al to PV activities is responsible for ensuring that the solution
meets the defined business requirements, supports patient safety activities, and does not
introduce bias that may inadvertently place patients at risk, in a disadvantaged position or
at potential for discrimination, e.g. denied the potential benefits of a medicinal product,
through exclusion based on race, gender, age, or socio-economic factors.

8.3. Sources of potential threat to fairness and
equity

Inherently, humans are biased and can introduce that bias throughout the Al system lifecycle
(e.g. requirements gathering, model training, monitoring may not detect poor performance,
incorrect results, or missed scenarios). Al experts and developers can have unconscious
bias, and potentially if not identified and addressed, the output can have limitations,
be discriminatory and may not be recognised as biased. Conversely, the output could be
accurate, fair, and equitable; however, results may be rejected by the human with a bias
towards the Al system as being of poor performance.

8.3.1. Inadequate training and/or testing data set(s)

Bias is primarily introduced in the data used to develop and test Al solutions, which can
perpetuate bias and discrimination resulting in harm. Incorrect conclusions can occur when
there are data limitations such as when it is not a complete dataset or does not represent
the population where the Al is being applied. The inappropriate or unintended application
of Al to populations not represented can occur if data limitations are not transparent or
recognised. The lack of robustness and availability of data, e.g. health records not digitally
available globally, can lead to underserved populations or underperforming models. When data
representation is inadequate, the available data does not correspond to the population and
consideration is required to remediate under-represented groups or lack of available organised
data, e.g. regions with less systemic PV reporting systems. Otherwise, scenarios may be
biased towards groups represented by the training data, and since the training data does
not represent all groups, e.g. all ethnicities, Al systems with inadequate training data could
result in poor system performance and discrimination against the under-represented groups.

Inadequate data - whether as a result of data not being available or not organised in a usable
format or structure, lack of data robustness, or inadequate representation of all variables -
may result in an under-performing model, or worse, incorrect conclusions as a result of model
limitations not being recognised, and this may negatively impact patients’ health outcomes.
For example, an algorithm developed to detect Acute Kidney Injury (AKI) using clinical data
predominately representing older non-black men may not be reliable when used to detect
AKl in younger female patients and in ethnicities not represented in the data.4 Imbalance of
data representation can potentially skew data, amplify imbalances, and it may be difficult to
identify and assess bias when reviewing an Al solution’s output.

It is acknowledged that it may not always be possible to find datasets for development
and testing that are fully representative of the intended population. In some cases, the gap
between apparently similar datasets may be too wide to bridge. In others, appropriate care
can be taken to re-purpose a dataset. For this, the developer should provide appropriate
documentation and demonstrate the appropriateness of models trained on imperfect data.
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Historically, there have been examples of bias influencing PV activities because of data
limitations such as known under-reporting or stimulated reporting of AEs, with inadequate
data or imbalance of data that could result in misleading or inaccurate results. Rofecoxib
(Vioxx), a Cox-2 inhibitor prescribed for osteoarthritis pain, provides an important example
of stimulated reporting where a significant number of AE reports were received once
withdrawn.5.6.7 Impact of safety alerts on measures of disproportionality in spontaneous
reporting databases exemplifies the notoriety bias. Drug safety. Litigation, such as class
action lawsuits that are pursuing product liability claims, can result in stimulating high volume
of reported AEs during the process of legal firms identifying potential plaintiffs-10 Solicited
reports could overshadow unsolicited reports and the imbalance of data could be a threat
to fairness and equity considerations if the data imbalance results in incorrect conclusions
with groups that are under-represented as a result of skewed data.8 Reporting practices,
data availability, and variability should be considered to understand limitations and limit
potential bias. These data biases, if introduced into an Al solution, will potentially magnify
the negative impact and remain undetected with difficult identification of underlying bias.

8.3.2. Underserved groups

Under-representation can directly result in underserved population segment(s) and potentially
not recognise nuances of subpopulations. Population-specific segmentation can be done
by demographics, disease processes, genetic variability, health practices variability,
and cultural differences for medical regimens and patient expectations. Such differences
can introduce bias, resulting in a negative impact or outcome. This can occur if data are
exclusive to a specific group, if data are exclusionary, or if nuances of a subgroup are not
understood. For example, a case prioritisation algorithm may underperform in reports from
certain countries in Asia if reports from Asia were under-represented in a training data set
and differed in important ways from other countries represented. Inclusion of appropriate
subject matter experts (SMEs), who can support identification and assessment of limitations
of representation to ensure that these groups can be accounted for when developing and
applying Al solutions, is fundamentally important.

During clinical trials, such potential harm may be missed by the Investigator if subgroups are
under-represented in the study population or receive a lesser level of care, e.g. have limited
access to medical professionals or facilities. There may be more focus on preventing false
negatives to not miss significant information, e.g. the failure of the PV process to detect
potential harm restricted to or over-represented in certain subgroups. In the post-marketing
period, deployment of an Al solution working less well in certain patient subpopulations could
lead to an inability to detect AEs from these populations. Conversely, false positives may be
of greater concern in duplicate detection where a higher rate of reports falsely flagged as
suspected duplicates in a specific country could lead to missed or delayed safety signals there.

Special populations frequently not represented, such as age-related (paediatric, geriatric),
pregnant women, and infrequent or under-reported events such as rare diseases, and events
with social stigmas need to be considered when assessing bias. In the example of an Al
solution implemented to support signal detection activities, with limited data from special
populations (e.g. pregnancy), the negative impact would be magnified with misinterpreted
or missed signals.

Reliance of decision making on data not representative of respective populations (e.g. post-
approval risk minimisation activities based on data with limited representation of served



population) could result in minimisation measures not properly addressing safety of patients
in the population. If unable to mitigate insufficient data in Al solutions, it may require non-Al
PV safety measures (e.g. robust monitoring measures for special populations).

The detailed identification of groups that could be disfavoured, identification of low-volume
events that are disproportionate to the data set, along with deploying comprehensive strategies
to address insufficient data, when possible, can reduce potential bias and discrimination
against underserved populations.

8.3.3. Atrtificial intelligence solution design

Algorithms should not perpetuate existing bias or discrimination, and the algorithmic design
can lead to unintended consequences. When Al was used to develop a model to predict
which patients would benefit from proactive intervention in the care of their chronic illness,
its results directed more resources to white patients than black patients, because the data
set used for training was based on utilisation, not need.® Given a healthcare system and a
universe of healthcare data that is likely to carry country-specific biases, any naive use of
Al will reproduce these biases in its predictions. The likelihood of adverse consequences
is more likely because of the apparent opacity of Al, hype about its capabilities, limited
understanding of how it works, and unclear pathways to question its conclusions.

Human-defined parameters and how a model processes data could introduce bias or produce
inaccurate results. If individuals select or design features for an Al solution based on their
own conscious or unconscious bias, the resulting output could be suboptimal or even
incorrect. In the case of GenAl prompt engineering development, the potential to introduce
bias based on the prompt design, lack of specificity, context, or omission of a required
prompt could result in an output with a negative bias. Individual preferences influence
decisions and subsequently influence data selection and model development. This could
occur due to the model developer having an affinity to subgroups like their own profile (e.g.
developer is a younger adult and may select data that does not account for paediatric or
geriatric populations).

The development strategy should have a conscious systematic approach to limit bias and
achieve complete and accurate data representation accounting for representative groups.
Strategies could include review and adjustments of Al solutions as necessary, including the
avoidance of historical biases. Documenting how distinct groups are represented in the
training and test data may provide insight to limitations, bias, and potentially impact supporting
implementing mitigation measures. When considering the population of respective groups,
confirmation that the data are representative of the global population is needed to ensure
balance, demographic parity, and appropriate distribution and allocation.

Al is increasingly employed in the field of medicine to identify patterns and anomalies,
such as consistencies, inconsistencies, and outliers in the identification of safety issues and
communications. For example, examining sentiment consistency can help flag and mitigate
human-induced discrepancies. This proactive approach reduces the risk of unfairness and
bias, enhancing the reliability and objectivity.10
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8.4. Risk, impact, and mitigation measures

The consequences of Al on fairness and equity are dependent upon the application of Al
within PV, the usability, performance, and the risk of where the Al is being used within the
process. When there are discrimination and bias embedded in the Al model through data
limitations and/or algorithm development, the negative impact of the resulting biased
model is maghnified in its application. The model may amplify or skew outcomes resulting in
incorrect conclusions, incorrect introduction of an advantage or disadvantage, inequalities,
or discrimination of groups or populations.

To assess the impact of potential bias, methods of analysing the fairness can be utilised.
Current techniques for assessing fairness in Al systems are focused on normative (value-based),
procedural (process focused) and algorithmic (technical) approaches, as described by Li &
Chignell.11 Normative approaches focus on societal norms, shared values and principles to
achieve an ideal standard for development of Al systems. Procedural approaches allow for
self-assessment using a defined framework such as checklists or decision trees. Algorithmic/
statistical approaches rely on a technical solution to support fair algorithmic decision
making. Formal impact assessments of Al systems should include screening for potential
bias that could negatively impact fairness and equity. This screening allows for identification
of potential risk areas and responsive mitigation measures to minimise negative outcomes.
When possible, applying appropriate statistical methods to test for bias as part of a detailed
assessment supports development of mitigation strategies related to Al. An example of
applying statistical tests of fairness is the use of t-tests assessing bias against minority/
majority, single case bias, and unsuccessful favouritism toward minority/majority.11

Evaluating an Al solution pre- and post-deployment for explicit or potential bias allows for
mitigation measures to reduce risk. Al solution explainability may highlight explicit bias and
understanding the profile of training data provides a degree of insight into potential areas
where bias may be introduced into the solution, determining appropriate use, solution
limitations, degree of human oversight required, and expected performance. When evaluating
for bias, consideration should be given to post deployment data annotation processes for
future retraining activities and mitigation strategies when possible.

Within PV signalling activities, omitted results could cause misrepresentation of a product
benefit/risk profile and have a detrimental impact, leading to incorrect human conclusions
or decisions impacting patient safety.

Sensitivity analysis of performance across different subgroups can be important to highlight
groups or populations underserved by an Al solution. A risk-based approach when selecting
subgroups to evaluate performance may be necessary when an exhaustive sensitivity analysis
is not feasible and may be dependent upon data limitations for training and test data for
subgroups or populations.



8.5. Key mitigation strategies

Evaluate each Al solution for fairness and equity, outlining the assessment method,
results, and any measures taken to mitigate.

Consider common biases across each phase of Al model development and key
mitigation strategies to address biases at the different phases of the Al model
lifecycle.4 Ensure that training and test data sets are complete and representative
of all relevant groups.

Perform sensitivity analysis when possible, evaluating Al model results for equity by
changing subgroups/populations to confirm expected results and highlight underserved
populations. This is especially important when an Al solution has a lower level of
explainability. Examples:

Modify sex and gender input and evaluate impact to the output;

Refer to an example noted in the Section Underserved groups regarding a case
prioritisation algorithm underperforming in certain countries such as Asia.

Review Al solution design, parameters, and feature selection for bias when an Al
solution is explainable and the results are not as expected.

Ensure training data description is transparent, highlighting explicit bias, and allow
clarity on model limitations to reduce inappropriate application or incorrect conclusions.

Determine level of human involvement required in development and monitoring
activities, providing required input to ensure accurate performance and fair results.

Identification of potential risk areas is challenging but key to preventing bias, discrimination,
and suboptimal model performance. Avoidance of data limitations is not always possible
and providing visibility of data characteristics allows appropriate application and opportunity
to mitigate risk. It is important to understand the model limitations and communicate to
the user community and group monitoring Al performance of limitations and potential bias.
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CHAPTER 9.
GOVERNANCE & ACCOUNTABILITY

Governance - Principle

Governance refers to the human management system used to control and direct the use of Al
in the PV system. An Al governance framework requires implementation of risk management
practices and policies to ensure adherence to the Al guiding principles.

Accountability - Principle

Accountability applies to clearly defined roles, responsibilities and liability for organisations
and/or individuals deploying, operating and managing Al systems to fulfil PV obligations.
It requires the adoption of appropriate governance measures by relevant stakeholders, including
but not limited to regulators, vendors, users, developers, data providers or pharmaceutical
companies involved in setting policy, developing, deploying, maintaining and managing Al
systems. This ensures operations remain within expected parameters throughout the Al
lifecycle while addressing any unforeseen consequences.

Key messages

Governance requires the established PV QMS system to include a comprehensive
approach across all lifecycle stages of an Al system as well as the processes it
impacts and should therefore be established as early as possible.

Accountability rests with the organisation that owns and operates the Al solution for
PV and requires clearly defined roles and responsibilities for stakeholders involved
in it; Al systems themselves cannot be held accountable.

Systems and processes, along with service providers and software vendors, need to
be qualified.

Regular reviews of Al systems and how they adhere to the Al principles are necessary
to ensure ongoing regulatory compliance and performance.

A governance framework grid for an Al solution in PV can serve as a structured guide to
help relevant parties to document key elements throughout the lifecycle of the Al system.
Governance and accountability should be independent of the business’ utilisation and
value proposition of the Al system to facilitate unbiased decision making.

9.1. |Introduction

Previous chapters have discussed in detail the importance of taking a risk-based approach,
providing adequate human oversight, demonstrating validity and robustness, and addressing
transparency, data privacy, fairness and equity when integrating and implementing Al systems
into the overall PV system. This chapter outlines the guiding principles of governance and
accountability in Al-enhanced PV. We will discuss the importance of these two principles,
the stages of the Al lifecycle that require specific governance actions, the roles and
responsibilities of various stakeholders, regulatory oversight, and the need for ongoing
training in the rapidly evolving field of Al technology.
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Robust governance and clear accountability are crucial for the success of Al initiatives. These
principles help ensure that Al systems are used responsibly and ethically, are compliant with
regulations, while fostering trust and transparency among stakeholders. Clearly defined roles
and responsibilities enable all stakeholders to understand their obligations and effectively
oversee Al solutions.

As Al technology evolves, governance and accountability frameworks will need to be adapted.
New risks and challenges will emerge, requiring updated principles and practices. Continuous
review and adaptation are essential for staying ahead of these changes. These include the
refinement of the proposed governance framework grid for practical use.

9.2. Governance framework

A governance framework grid (referred to as grid) for Al solutions in PV (see Table 9) is a
structured guide designed to identify key considerations to address each of the principles
throughout the lifecycle of the Al system, including concept, development, deployment,
and monitoring phases of the Al system developed for PV use.

In addition to serving as a structured guide for planning and overseeing Al systems, the grid
can also aid in self-assessment. By detailing where each action or process is recommended,
the grid helps ensure that the principles such as transparency, accountability, and a
risk-based approach are consistently adhered to, facilitating the integration of Al into PV
systems. Regular reviews of KPIs by a governance body, aimed at ensuring adherence to
the Al guiding principles, can facilitate identification of gaps and drive improvements in the
Al solution. While a governance body with expertise and focus on Al's use in PV is needed
in early phases, integration of the governance process into the overall PV system oversight
mechanisms should be considered when the Al systems enter routine use phase. If a risk
emerges that warrants significant modification to the Al system, the Al focused governance
body may need to be re-engaged.

Consultation with the grid can occur in multiple ways. A unit within a PV organisation may
have an idea for Al-based automation and specify governance requirements upfront when
commissioning a vendor or internal development team. Alternatively, a vendor might present
a ready-made Al system to a PV organisation, which then can be evaluated against the Al
guiding principles, for example, by applying this grid. Early consideration of governance
principles is crucial for the successful implementation of an Al solution. These principles
should guide the development or selection of a vendor system, deployment, ongoing
management, and decommission. Early planning should be focused on identifying potential
risks and determining mitigation strategies. Furthermore, it can stimulate focus on alignment
with ethical and regulatory standards of the Al system from the outset, setting the foundation
for a robust and compliant Al system.

The grid is composed of five lifecycle phases of the Al solution: an initial requirement
specification phase where business units typically provide input, followed by development,
pre-deployment, post-deployment, and routine use. These phases are valid for both initial
qualification and iterative changes of the Al system. It should also be noted that during the
lifecycle of an Al solution, it may be necessary to go back to a previous phase to address
certain needs and discoveries. In each phase, the Al guiding principles should be considered,
and in the grid, each principle constitutes a cell for relevant documentation hereof. When the
grid is used for a specific Al solution, each cell is intended to provide information about



actions, considerations, or references to where these actions are documented, such as SOPs,
working instructions, or repositories containing log files, reviewed performance metrics,
or names of accountable persons/review bodies. lllustrations of how each guiding principle
is applied throughout the lifecycle phases can be found below, and examples of how to put
this grid into practice can be found in Appendix 3: Use cases.

The below lifecycle phase descriptions accompany Table 9 on the Governance framework
grid on pages 92 and 93.

Collection of specifications, requirements: This is the initial phase where the stakeholders
are identified and engaged, and the project’s objectives, value proposition, scope and features
are defined. The multidisciplinary team of PV professionals, data scientists, Al/ML engineers,
software engineers, IT specialists, and other domain experts (refer to the chapter on Human
oversight) is typically managed by system developers, software vendors, or an internal IT
development team. This phase provides a roadmap for developers and end-users, and lays
the foundation for the entire development process. Like traditional software, as an Al system
evolves, the requirement specifications may also require iterations, and consequently, the grid
may need to be reconsidered accordingly.

Development & change management: In this phase, the multidisciplinary team focuses
on acquiring, creating or modifying Al systems, ensuring they are built with the necessary
functionality and adherence to governance principles. Whether developing an Al system or
selecting a vendor system, these principles will apply throughout.

Pre-deployment & post change “sign-off”: At this phase, the Al system transitions
from the development stage to deployment into the PV process. Before implementation,
a thorough validation including extensive Al specific tailored review of outputs and approval
process is required to ensure the Al system, or any changes hereof, is ready for deployment.
Typically, a PV expert becomes accountable for the results produced by the Al system
and for adapting the processes in which the system will be used. Documentation of this
phase may include risk assessments, review of sufficient adherence to principles, sign-off
forms, validation reports, and many references to SOPs detailing the sign-off procedure,
PV processes impacted by deployment, etc.

Post-deployment & post change “hyper-care”: Following deployment, this phase is critical
for the immediate monitoring of the Al system’s performance or the latest changes’ impact.
It is a period of intensive observation to promptly identify and resolve any unanticipated
issues, as real-life application of the Al system in the PV process might surface issues due
to various reasons such as incorrect assumptions, design flaws, unintended bias, in earlier
stages. This phase differs from traditional software hypercare; for Al systems, immediate fixes
may not be feasible and other measures such as human intervention or increase in human
oversight might be needed. Documentation is expected and may include incident logs and
performance analysis reports specific to the most recent change while under observation.

Routine: This phase signifies the full integration of the Al systems into the PV process.
It involves ongoing monitoring, maintenance, and documentation to ensure full oversight and
allows for the identification of trends through the monitoring of pre-defined KPIs. This phase
may reference routine reports, logs of ongoing actions, and which SOP or working instruction
manages this review process, reflecting the model’s full operational status.

Of note, discoveries during post-deployment or routine use phases may necessitate the Al
system being suspended and sent back to pre-deployment for enhancements.
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The following, non-exhaustive examples illustrate aspects to consider for each guiding
principle in relation to the lifecycle phases in the grid.

Transparency: In the Development phase, there is a focus on creating comprehensive
documentation of the development activities including reason for changes and data used in
model training. Efforts should be made to ensure Al system and training data description is
transparent, and limitations are highlighted to reduce inappropriate application or incorrect
conclusions. In pre-deployment, transparency is further enhanced by adding model performance
evaluation, and empirical evidence for fairness and equity. Also, the documentation created
should ensure consistent understanding of the intended use among different stakeholders.
In routine use, the most important transparency is toward the end-users and those responsible
for the continual performance evaluation and monitoring.

Accountability: Throughout all phases, there is a consistent need to assign and document
responsibility, whether it is to IT, vendors, or to PV experts. This ensures clarity about
who is accountable for the Al system’s development, change management, deployment,
and performance at any time.

Risk-based approach and human oversight: This begins with identifying the level of risks
associated with development of the Al system. When relevant, it may involve the development
of clear annotation guidelines for human domain experts to ensure solid method development
and performance evaluation. When evaluating Al system performance, special considerations
should be given for low-prevalence settings (see also the discussion of performance evaluation
in the Chapter on Validity & Robustness). The next step is to propose appropriate mitigation
strategies such as defining “human-in-the-loop” within an Al system and other oversight measures
up to eventually creating risk mitigation requirements in the user interface. It continues with
redefining human oversight in Pre-deployment, and further refining these concepts at regular
intervals in the Routine phase based on reallife observations. This sequential approach
highlights the need for evolving risk management as the Al system advances through its
lifecycle. A risk-based approach in general is recommended for all measures taken to adhere
to Al guiding principles.

Any changes to the Al system must undergo the same rigorous governance considerations
as the initial deployment. This ensures that modifications do not compromise the system’s
integrity or performance. Documentation and validation are essential to maintain transparency
and accountability. Change management processes should be in place to handle updates
and modifications effectively and account for a post-deployment phase, that based on hyper-
care, will confirm performance and quality beyond routine monitoring. As computer system
validation requirements need to be met at the same time, it is advisable to de-couple Al
system version control from the rest of the software versioning.

9.2.1. Governance body and accountability assignments

To effectively manage the review and agree on actions and risk assessments towards
the different principles, it is advisable to nominate a governance body. This group ideally
should be a diverse, cross-functional team that has sufficient awareness of the end-to-end
process and the extent of automation within it. It should include representatives from all
relevant stakeholders and representation from the software vendor may also be considered.
This diversity and segregation of duties ensure a broad and balanced review of the Al system.
The governance body oversees the development, deployment, performance, and ongoing



management of the Al system to ensure that all actions align with guiding principles and
regulatory standards. The governance body also determines accountable persons for the
respective lifecycle phases, which includes sign-off of the documentation prior to deployment
of the Al system into the PV process. Because business cases are often drivers of Al initiatives,
the governance body should also include the respective project managers or sponsors to
ensure adequate resourcing of governance measures during each phase of the lifecycle.

Unlike traditional software, the governance body of an Al system should review the adherence
to the Al use guiding principles in defined intervals, and ad-hoc if needed, to ensure the
assessments are still valid. This is due to the rapid evolution of the field and the inherent
risks of Al systems that changing inputs, rules or other unforeseen issues may disrupt the
system at varying degrees, some significantly. The appropriate frequency and scope of
reassessment of a deployed Al system should be assessed. There should be measures ready
to intervene or even disable the Al system if necessary. Once the governing body defines
that the Al system has reached the routine use phase, governance can be handed off to
process owner to be integrated in the overall PV system monitoring process. Nevertheless,
if a risk emerges that warrants significant modification or suspension to the Al system, the Al
focused governance body may need to be re-engaged. The introduction of version control
for the governance framework grid should also be considered.

9.3. Traceability and version control

Traceability and version control are crucial aspects of managing Al systems, particularly in
a regulated field like PV where errors could impact patient safety or public health. They can
enable evaluation and reproducibility of earlier versions of an Al system and are often required
for audit purposes (see also the discussion of Al systems with stochastic components in
the Chapter on Validity & Robustness). General best practices from existing version control
frameworks can offer orientation for the version control of Al systems, which should be
documented alongside other relevant systems involved in the end-to-end process. They should
include clear change control processes within both a user acceptance testing environment
and the production environment.

Documentation of an Al system should comprise its entire lifecycle, and may cover the
justification, initial scoping and conception, development, deployment, validation, post-
deployment, and decommissioning. It should allow for the retrieval and reproducibility of
essential steps and decisions, including justifications and reasoning for deviating from pre-
specified plans. As in traditional computer system validation, experiments conducted in,
or before, the development environment are not required to be documented step by step.
However, when the outcome of such an experiment or analysis impacts how an Al system
is evaluated or deployed, the justification for such decisions should be documented. If a
decision is based on certain results or insights from the development stage, this should
be documented.

During the development phase, Al systems undergo continual experimentation and iterative
improvement. Transparency between the development team and the PV organisation is crucial
to ensure efficiency and that the system is fit-for-purpose. Developers may create multiple
versions of a model, test various features, and experiment with different training sets. In this
context, focus should be on maintaining clear records of significant milestones — such as
major changes in model architecture, the introduction of new datasets, or significant shifts
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in performance metrics. This allows developers to track the evolution of the model and
understand the implications of key changes without being overwhelmed by the sheer volume
of minor tweaks and experiments.

Once an Al system moves from development to routine use in a production environment,
the need for rigorous traceability and version control increases substantially. Deployed
versions of the model should be documented in detail. In addition to the source code for
each version, its underlying model architecture, training and test sets, and performance
evaluation results should also be documented. From a regulatory perspective, the appropriate
place to declare Al components would be in a document such as the PV System Master File
(PSMF), in the EU.

The continual improvement and adaptation of Al systems post-deployment should also be
documented. It may be triggered by human domain experts or built into the deployment
of the Al system itself including pre-specified monitoring of deterioration of performance
or model drift. Some challenges related to this for Software as Medical Device have been
described by FDA.1

When integrating external Al components (such as pre-trained models or libraries), it is important
to document the versions of these components, particularly if they play a critical role in the
model’s performance. However, it may be sufficient to document these components at the
time of significant milestones rather than during every iteration. As an example, for Al-based
static systems, previous work proposes a specific documentation approach with proposed
considerations for documentation within the different stages of the Al system lifecycle.

9.3.1. Roles and responsibilities in artificial intelligence-
enhanced pharmacovigilance systems

Organisations are accountable for the quality processes associated with their PV system, including
the oversight of the Al components by the system owner. Oversight activities may be executed by
a third party under appropriate supervision. Regulations, e.g. EU Al Act, may require organisations
to establish specific roles, such as those to promote Al literacy, and facilitate fairness and equity.
Al systems themselves cannot be held accountable. Human oversight is essential for ensuring
the safe and responsible use of Al. Clear roles and responsibilities must be defined for all
stakeholders involved in Al initiatives.

The roles of PV experts are evolving with the introduction of Al. Already, Al introduces new
tasks, such as overseeing Al systems and interpreting their outputs. PV experts must adapt
to these changes and develop new skills and competencies (see chapter on Human oversight)
to fulfil their obligations. This is especially relevant for members of the governance body
and persons nominated as accountable for a lifecycle phase. The governance framework
grid allows stakeholders to assess whether certain new activities will become relevant at
specific steps, highlighting training needs early.

Just like with traditional software providers, the collaboration between vendors of Al systems
and PV experts is crucial. This collaboration can help to ensure that Al systems meet PV
requirements and governance principles. Regular audits and qualification of vendors and Al
systems, ongoing performance monitoring, business continuity planning are essential for
maintaining compliance and ensuring development standards. Effective collaboration and



audits foster transparency and accountability. This can ensure Al systems that are reliable,
meet regulatory standards and are inspection ready.

Regulatory authorities also play a role in monitoring Al in PV. They oversee that Al systems
comply with regulatory standards and governance principles through inspections. Regulatory
authorities are also developing guidance on the use of Al in the drug lifecycle, including PV (see
Chapter on Landscape analysis). Integration of Al systems into the PV system must include
appropriate regulatory documentation (see Chapter on Transparency), such as in the PSMF.

PV inspections are likely to increasingly focus on Al systems, with inspectors reviewing
Al-related documentation, performance metrics, and governance practices. Inspectors will
need adequate competencies to evaluate these systems effectively. This includes technical
knowledge of Al and data science. As a result, continuous development and training are
needed for inspectors to fulfil their role in new and fast-evolving areas.

Balancing innovation with regulatory compliance and adherence to guiding principles is
important for the success of Al initiatives. This involves fostering a culture of responsible
innovation. These goals can be achieved by establishing effective governance processes
that include regular reviews of Al system KPIs.
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CHAPTER 10.

FUTURE CONSIDERATIONS FOR
DEVELOPMENT AND DEPLOYMENT
OF ARTIFICIAL INTELLIGENCE IN
PHARMACOVIGILANCE

10.1. The evolution and future of artificial
intelligence in pharmacovigilance

The chapter explores the continuing transformative impact of Al on PV from the current
application to a vision of how Al might impact PV in the future. The CIOMS Working Group
XIV's discussion in the earlier chapters of this report is grounded in common principles.
Use cases (see Appendix 3) detail various Al systems under evaluation, and at stages of
deployment, and provide an assessment of their effectiveness within the discipline. To try
to predict into the future, it is essential to recognise that the trajectory of Al is dynamic and
highly unpredictable. Indeed, the only truly predictable elements are that Al is expected to be
ubiquitously deployed in medical sciences with the potential to revolutionise many aspects,
arguably all, of drug development and medical practice, from bench to bedside — as well
as PV. For this reason, this chapter is grounded on the further developments of Al in PV
described in earlier chapters of this report and anticipates how applications based on the
principles might need to evolve as Al use in PV becomes more prevalent and sophisticated.

The chapter provides considerations for PV stakeholders, including regulators and HCPs
and other industry stakeholders to ensure Al's safe and equitable deployment in PV.
The skillsets needed by PV professionals today will likely differ from those required in the
future, necessitating involvement in the design, development, deployment, and routine use
of Al in PV. The examples illustrate the direction and immense potential of Al adoption in
PV; however, these examples are speculative to a certain extent and are not meant to be
exhaustive. Al is set not only to potentially revolutionise PV, dissolving traditional boundaries
of PV, but also expand its footprint far more broadly across medical sciences.

The current decade represents a nascent phase for Al adoption in PV, and it is worthwhile
acknowledging that the broad field of Al, particularly GenAl, is currently advancing rapidly.
Further and more extensive deployment of Al may necessitate changes in how we think or
approach PV strategies in the years ahead, driving the discipline of PV beyond its traditional
frameworks and transforming it into self-detecting, real-time monitoring of safety data that
aligns with the evolution of Al-driven medical science; for example, with the ability to rapidly
analyse and extract vast quantities of safety data for case reporting and signal detection
purposes. By leveraging this capability of Al, PV will evolve from a reactive focus on reporting
and assessment to a forward-looking approach centred on proactive prediction and prevention,
and/or real-/near-real-time learning systems.
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The initial phase of evolution has started to impact PV's core activities including case
management and safety surveillance, as it continues to move from reporting and assessment
towards prevention, enabled by advancements in Al-enhanced healthcare and into radically
new areas of medicine. These technologies have the potential to reduce manual workload
and the burden on PV professionals, for example, by accelerating response times for priority
events, increased capabilities to sift through large and varied sources of safety data including
literature, automatically creating case reports, and performing signal detection.1,2,3,4,5

10.2. Transformative role of pharmacovigilance
long-term and beyond: from prediction to
detection and prevention

Advanced Al systems are poised to take PV beyond current boundaries, for example into
tasks supported by automated or augmented decision making, Al agents and quantum
computing to improve Al training, modelling and simulation, and optimising personalised
medicine.6.7.8,9 Al, with capabilities for approximate reasoning, could handle ambiguity and
partial truth values, for instance, in assessing safety data from social media entries or from
fragmented safety-relevant data across different systems. Such Al systems may enable PV
professionals to make nuanced decisions in case classification (e.g. assigning causality)
or other PV situations requiring medical decision making. This would be particularly useful
for cases with incomplete or conflicting data, where the gray area requires sophisticated,
context-aware analysis and/or medical judgment.10.11 While current limitations of Al models
are acknowledged earlier in this report, a more explicit recognition of the ongoing evolution
of Alinfrastructure is recommended. It is envisioned that evolution of Al systems will improve
and address some, if not all, of the limitations of the current models.

In the future, an expert Al system, designed specifically for PV, may emulate the judgement and
decision-making processes of seasoned professionals or organisations with deep expertise
in the field. These systems may not supplant human experts but augment their capabilities,
enabling more nuanced and efficient decision making. An expert PV Al system would ideally
be tailored to incorporate advanced analytical preciseness specific to therapeutic areas
such as oncology, immunology, vaccines and medical devices as well as very different
therapeutic options such as digital therapies, ensuring they adapt to the complexities of
specific therapies, diseases, and patient populations, within those therapeutic areas, while
performing or supporting PV work. While the development of such systems requires significant
investment, their potential to drive the next generation of targeted PV solutions positions
them as a critical innovation in advancing patient safety.

In the future, it is possible that traditional PV will have transitioned from primarily detecting
and processing adverse effects to a frontline technology-driven discipline that is engineering
technologies that can detect, evaluate and share the information with “self” (human or organ:
heart, kidney, liver, lungs etc.).12,13,14,15

This may then allow HCPs and patients to take a more active role in vigilance and prevention
by taking corrective actions before adverse symptoms arise. As a discipline, PV leveraging
Al is likely to evolve into a function that develops technologies enabled by Al to perform a
proactive assessment of anomalies, self-report and self-learn on how to prevent the presence



of such anomalies in the future and continue to promote patient wellness and safety. This will
include true Al-enabled proactive self-regulated vigilance and risk mitigation.

10.3. Future development and deployment of Al and
the guiding principles

The CIOMS Working Group XIV members made the careful decision to structure the report
around common principles for the use of Al in PV, based in part upon the recognition that this
transformative technology is in a period of exponential growth. A report that was prescriptive
and overly reliant upon current examples would quickly become outdated, especially if Al
technologies from other healthcare domains are leveraged. The authors expect that common
principles for the use of Al in PV will be durable for the foreseeable future. What is less
certain is how the guiding principles may be applied. Although the principles are robust
and are expected to endure, it is likely that they will evolve in parallel with the technical Al
advances and their use in detection, prevention and decision making by the individual human
or subject going under medical treatment. The potential implications are discussed for each
of the guiding principles below.

Risk-based approach

Chapter 3 discusses risk-based approaches including risk mitigation, and also considers
the regulatory framework required.

The proliferation and advancement of Al may lead to continuous self-learning and potentially
autonomous Al systems, with potentially great advancement in PV and benefit to patients
and HCPs.

Nevertheless, such systems come with potential concerns and risks. For example, a significant
concern is the potential for Al to distort our understanding of a medicine’s benefit-risk profile
in real-world settings. Traditionally, these profiles are evaluated through carefully designed
frameworks involving spontaneous reporting systems and planned surveillance studies.
However, Al-driven systems may inadvertently restrict prescribing practices, for instance,
by limiting access to Al-enhanced PV systems for high-risk patients or preventing off-label use.

Further complicating matters, the adoption and availability of such systems may vary
across healthcare systems and regions, introducing inconsistencies in data patterns that
are challenging to interpret. This fragmented landscape can obscure the true influence that
Al systems exert on prescribing decisions, making it difficult to assess their actual impact
on patient outcomes. In addition, incorrect interpretation and poor utilisation of Al is likely
to significantly hamper patient safety. The principles of Human Factors and Ergonomics
(HFE) can assist in simplifying Al design and consequently optimise human performance
ensuring better understanding of Al outcome. HFE is a scientific discipline that focuses on
understanding interactions between humans and other elements of a system to optimise
human well-being and overall system performance and uses principles, data, and methods
to design and improve systems, products, and environments.16

The oversight and risk mitigation of such advanced Al systems demands a dynamic risk
assessment framework; one that integrates near-real-time monitoring and adaptive evaluation
processes. Ensuring effective communication of these evolving risks to all stakeholders,
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including patients, will be crucial. As part of risk mitigation, healthcare leaders must embrace
flexible governance models that account for Al's evolving nature, ensuring that transparency,
accountability, and equitable access remain at the forefront.

As covered in Chapter 3 on Risk-based approach, risk mitigation needs to consider identifying
rare, unexpected anomalies (Black Swan incidents). While current PV systems are well-equipped
to anticipate, assess, and manage common safety risks, they must also adapt in detecting
these outlier events, particularly where advanced Al systems are deployed.

Human oversight

Chapter 4 covers human oversight including the changing and transformation of traditional
roles in PV as Al use becomes increasingly embedded and ubiquitous.

As Al systems become increasingly pervasive and autonomous, the role of human oversight
will inevitably shift. While maintaining a HITL approach will likely remain essential, this may
prove insufficient for highly complex or higher-risk applications — including aspects of PV.
Conversely, in some scenarios, human oversight may substantially change and become less
relevant, as Al systems surpass human capabilities in reviewing data and regulating their
own processes.17,18,19

This evolving landscape will require PV professionals to develop new skillsets, Al system
benchmarking tools and metrics, and undergo specialised training to effectively oversee
Al-driven systems. This includes, but is not necessarily limited to, Al-aided testing and
benchmarking, KPIs, workflow improvements, and drift and bias monitoring. The focus must
extend beyond traditional oversight methods to include competencies in understanding,
interpreting, and guiding Al behaviours. In addition, there must be implementation of dynamic
and continuous training of PV professionals and technicians overseeing Al systems in PV to
ensure appropriate monitoring. However, HITL oversight may be insufficient for certain highly
complex and/or very high-risk applications. In these instances, new tools may need to be
developed in conjunction with training to maintain adequate human oversight. By cultivating
these skills and adjunct oversight tools, PV professionals can ensure that human oversight
remains meaningful and effective in safeguarding patient safety and public health.

Validity & Robustness

Chapter 5 discusses validity and robustness and considers multidisciplinary collaborations
required as well as reference standards and performance evaluation that might be needed
to ensure robust and valid Al systems.

As Al becomes more embedded and sophisticated, the challenge is to develop appropriate
methods and systems that validate and ensure data integrity in tandem with the developments.
For example, with the potential for processing vast amounts of data in real time or near real
time, there is a need for scalable validation methods to avoid the risk of false signals. This may
require PV individuals to develop new skill sets or even new specific scientific disciplines and
creation of cross functional and multidisciplined PV teams to meet the demands of validating
Al-enabled systems. As discussed in Chapter 5, best practices for critical appraisal of Al in
generative applications are still evolving and will likely become better understood and more
consistently utilised. Al use with some advanced technologies would need the creation of
new standards and validation methods and consideration of how it is deployed for optimising



the outputs and real-time / near-real-time safety data generated, e.g. neurotechnology such
as implantable chips, nanotechnology and smart organs.

Transparency

Chapter 6 covers transparency and explainability of Al systems and related challenges.

As Al becomes increasingly pervasive, our ability to track its deployment and understand its
decision-making processes may diminish, posing significant challenges to explainability and
transparency. Al systems may mirror complex statistical processes and advance programming
or Al-coded programs. Consequently, the necessity, and even practicality, of full transparency
may face new challenges. Expectations of transparency may need to evolve as trust in Al
systems strengthens and meets predefined confidence thresholds.

Much like Al's role in data analysis, statistics, and signal detection today, tracing Al's precise
influence on downstream decisions may become increasingly difficult. Just as the complexities
of prior distributions in Empirical Bayes Geometric Mean (EBGM) disproportionality models
are widely accepted yet rarely scrutinised, established trust in Al-generated outputs may
drive a shift in focus, with the expectation that errors or miscalculations will still prompt
corrective actions to ensure sound decision making.

In parallel, as trust in Al solidifies, the emphasis on explainability may similarly evolve. While
transparency will remain important, its most critical value may emerge during incidents or errors.
Much like the role of flight data recorders in aviation, explainability is vital for understanding
failures and enhancing system improvements rather than serving as a constant requirement.

This shift may significantly influence PV decision making, emphasising timely interventions
and near-real-time root cause analysis. Looking ahead, organisations may need to balance the
benefits of enhanced-Al performance against the degree of transparency required, carefully
weighing improved efficiency with the need for interpretability in high-stakes decisions.

Data privacy

The right to control one’s personal data is durable and has been widely adopted internationally.
What is likely to occur in the coming years is that preserving data privacy will become more
challenging. The trajectory of Alin PV is poised for further rapid growth. The incorporation of
big data analytics, federated learning, and blockchain will enhance data security, interoperability,
and global collaboration. For example Al-powered chatbots and virtual assistants will facilitate
real-time ADR reporting by engaging with patients and HCPs seamlessly.20.21 As noted in
Chapter 7, leaks of personal data have been increasing in frequency, with some at enormous
scale.22 The increasing use of online platforms for communications and services has been
accompanied (in some countries) by a common lack of understanding into how collected
data are used along with an acquiescence to the risk of data breaches. Breaches have
occurred for reasons ranging from neglect to criminal intent. In the case of health care data,
the release of personal data without the individual's approval carries risks for emotional
well-being, stigmatisation, and discriminatory treatment.

The pressures to amass and link large health care data sources are compelling, both on
account of operational efficiencies (assuring consistencies in clinical care as well as medical
care costs) and the advancement of scientific knowledge. At this time, the use of GenAlis in its
infancy, and the only certainty is that it will both improve in quality and accelerate in use, as it
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is applied to many areas of biomedical research and clinical practice, and indeed in our daily
lives. The use of open LLMs carries particular risks for the unintended disclosure of personal
data, a topic that is likely to receive attention in coming years as the risk becomes clearer.

Societies will need to balance the pressures for the commoditisation of data to maximise
learning and therefore better outcomes for patients with Al, with protections against unintended
disclosure. One possibility is that data sharing will be automated, but that systems have built-
in checks and an obligation to maximise the demonstrable value of the data for the patients
and/or patients’ carers. Security measures to support anonymisation might incorporate
blockchain or similar technology to make complete anonymisation possible without a patient
key to allow all care-relevant data to be safely shared with complete confidence and assurance
that the Individual's data are anonymised. Without the appropriate regulatory checks and
balances, it is also easy to see that these data could easily be misappropriated or abused.

Al's evolution may usher in an era where access to underlying safety data becomes
instantaneous, enhancing real-time insights and facilitating seamless data sharing. These
advancements could significantly improve the timeliness and accuracy of safety assessments.
However, an opposing scenario is equally plausible, one in which data sharing becomes
increasingly restricted due to proprietary concerns, legal complexities, or public mistrust.
As awareness grows regarding data’s value as a commercial asset, particularly in insurance
and other industries, heightened caution may further constrain data flow. A further challenge
for data privacy and deployment is heterogeneity of data privacy regulations and data sharing
across regions.

Balancing these dynamics will be critical. Establishing transparent frameworks that foster
trust, ensure data integrity, and promote responsible data sharing will be essential to fully
realise Al's potential while safeguarding public confidence.

Fairness & Equity

Chapter 8 on fairness and equity considers how and what type of discriminatory biases might
be identified, addressed and/or prevented arising from the use of Al systems.

Fairness and equity should mean that patients and health care professionals should have
equal access to all the new and advanced Al technologies.

It is important, as described in the data privacy section above, to ensure that PV with
ubiquitous Al use is deployed equitably, and that data sharing does not put individuals at
risk for example, of higher healthcare costs associated with more advanced monitoring,
genetic profiling and/or personalised risk/remediation, or discrimination for insurance or
treatment purposes.

Al should help to ensure equal understanding of safety data and its relevance to all patients,
irrespective of social circumstances and background, and the understanding of benefits and
risks to specific individuals or subgroups of the population.

Governance & Accountability

Chapter 9 of covers Governance & Accountability including a governance framework grid
for the lifecycle phases of Al solutions in PV.

The accelerated integration of Al underscores the need for dynamic, risk-based governance
frameworks capable of near-real-time interventions.



This is especially true as Al systems become more autonomous and self-determining,
for example, with automated patient or HCP alerts, which will self-monitor their function and
output and take preventative measures based on self-detected alerts. Such advancements
raise critical questions: how will governance, accountability, and human oversight of PV of
these new technologies evolve in tandem with these capabilities?

Ideally, regulatory authorities and industry leaders in PV will establish robust oversight
mechanisms to ensure that Al systems in PV are developed and deployed responsibly.
Safeguards must be in place to protect against data misuse, uphold privacy standards,
and ensure these technologies ultimately enhance outcomes for patients.

The growing autonomy of Al in PV further emphasises the need for adaptable regulatory
frameworks. Continuous surveillance, proactive auditing, and rigorous inspection protocols
will be essential to mitigate risks, uphold patient safety, and protect public health. Achieving
this will require a shift toward governance models that are as agile and responsive as the
technologies they seek to manage.

10.4. Conclusions to the future considerations for
development and deployment of artificial
Intelligence in pharmacovigilance

Proliferation and deployment of Al and its integration into PV is set to cause a paradigm
shift in this discipline, which is likely to be focused on rapid or real-time data collection,
assessment and reporting. For example, providing us with the ability to analyse and extract
vast quantities of safety data for case reporting and signal detection purposes at a rapid pace.
This could fundamentally change the way we work to take advantage of these technological
advances, for example, streamlining processes and causing changes in the wider healthcare
environment and beyond.

Along with the enormous potential for Al in PV, there are many challenges which warrant
future consideration, particularly around oversight of autonomous Al systems, and how Al
may impact data privacy and ethical frameworks. It is critical that the guiding principles
outlined in this report remain as core considerations, but with the understanding that they
will need to evolve and adapt with advancements and application of Al in PV and medicine
in general. This is to ensure Al use in PV remains unbiased, transparent, and secure to
prevent misuse or accidental harm. The appropriate human oversight, including regulatory
and ethical safeguards, will be as crucial as the technological advancements being applied.
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APPENDIX 1.
GLOSSARY

This glossary provides definitions specific to terms within the context of Al use in PV or
existing definitions have been simplified for the purpose of this document e.g. technical
definitions. Refer to the International Council for Harmonization of Technical Requirements for
Pharmaceuticals for Human Use (ICH) compiled by CIOMS in the Glossary of ICH Terms and
Definitions and all other relevant glossaries available for any additional terms not described
within this glossary.
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Accountability

Accountability applies to clearly defined roles, responsibilities and liability for organisations
and/or individuals deploying, operating and managing artificial intelligence systems to
fulfil Pharmacovigilance obligations. It requires the adoption of appropriate governance
measures by relevant stakeholders (including but not limited to Regulators, Vendors,
Users, Developers, Data Providers or Pharmaceutical Companies involved in setting
policy, developing, deploying, maintaining and managing artificial intelligence systems).
This ensures operations remain within expected parameters throughout the artificial
intelligence lifecycle while addressing any unforeseen consequences.

Proposed by CIOMS Working Group XIV.

Adverse event

Any untoward medical occurrence in a patient or clinical investigation subject administered
a pharmaceutical product and which does not necessarily have a causal relationship with
this treatment. An adverse event (AE) can therefore be any unfavourable and unintended
sign (including an abnormal laboratory finding), symptom, or disease temporally associated
with the use of a medicinal (investigational) product, whether or not related to the medicinal
(investigational) product.

Adopted from: Council for International Organizations of Medical Sciences (CIOMS). Glossary of ICH terms and
definitions. Geneva: Council for International Organizations of Medical Sciences; 2024. (Full text accessed 4
April 2025)

Adverse reaction

A response to a medicinal product that is noxious and unintended, meaning a causal
relationship between the product and the event is at least a reasonable possibility.

Modified from: Council for International Organizations of Medical Sciences (CIOMS). Glossary of ICH terms and
definitions. Geneva: Council for International Organizations of Medical Sciences; 2024. (Full text accessed 4
April 2025)


https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/
https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/
https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/
https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/
https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/
https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/

Glossary

Agent in Al

Software program that interacts with its environment to collect data and utilize that data
to perform specific tasks to meet predetermined goals. Agents can act independently
or collaborate to achieve a common goal.

Modified from: Amazon Web Services (AWS). What are Al agents? [Internet]. Seattle (WA): Amazon Web
Services; 2024, (Webpage accessed 15 October 2025)

Artificial intelligence literacy

Having the essential abilities needed to understand, learn and work in a digital world
through Al-driven technologies.

Modified from: Ng DTK, Leung JKL, Chu SKW, Qiao MS. Conceptualizing Al literacy: an exploratory review.
Comput Educ Artif Intell. 2021;2:100041. https://doi.org/10.1016/j.caeai.2021.100041. (Journal full text)

Artificial intelligence system

An artificial intelligence (Al) system is a machine-based system that, for explicit or implicit
objectives, infers, from the input it receives, how to generate outputs such as predictions,
content, recommendations, or decisions that can influence physical or virtual environments.

Modified from: Organisation for Economic Co-operation and Development (OECD). Explanatory memorandum
on the updated OECD definition of an Al system. (OECD Atrtificial Intelligence Papers, No. 8.) Paris: OECD
Publishing; 2024. (PDF accessed 15 October 2025) https://doi.org/10.1787/623da898-en.

Note: In the context of pharmacovigilance, the use of Al systems and activities is aimed
at enhancing drug safety monitoring, patient safety and regulatory compliance.

Augmented intelligence / Intelligence augmentation

Augmented intelligence is a conceptualization of artificial intelligence that focuses on
artificial intelligence’s assistive role. It emphasizes the use of artificial intelligence for
enhancing, i.e. augmenting or amplifying human intelligence, rather than replacing it.
Inherent in this view is the recognition that artificial intelligence and humans work together
in a human-centered partnership, where each one can perform certain tasks better than
either could alone.

Combined from:

— Madni AM. Augmented intelligence: a human productivity and performance amplifier in systems engineering
and engineered human-machine systems. In: Systems engineering for the digital age: practitioner
perspectives. Hoboken (NJ): Wiley; 2023;0ct 8. p. 375-391. https://doi/10.1002/9781394203314.ch17
(Chapter abstract)

— World Medical Association (WMA). WMA statement on augmented intelligence in medical care. Ferney-Voltaire
(France): World Medical Association; 2019. (Webpage accessed 3 April 2025)



https://aws.amazon.com/what-is/ai-agents/?
https://doi.org/10.1016/j.caeai.2021.100041
https://www.sciencedirect.com/science/article/pii/S2666920X21000357?via%3Dihub
https://www.oecd.org/en/publications/explanatory-memorandum-on-the-updated-oecd-definition-of-an-ai-system_623da898-en.html
https://doi.org/10.1787/623da898-en
https://onlinelibrary.wiley.com/doi/10.1002/9781394203314.ch17
https://onlinelibrary.wiley.com/doi/10.1002/9781394203314.ch17
https://www.wma.net/policies-post/wma-statement-on-augmented-intelligence-in-medical-care/

Automation bias or automation complacency

Automation bias and automation complacency are overlapping manifestations of
automation-induced phenomena, where human attention plays a central role. Both refer
to the human tendency to favour or trust suggestions from automated decision-making
systems over non-automated contradictory information even when it is correct. They can
involve attentional bias directed toward the automated output, or insufficient attention
and monitoring of the automated output, especially in context of multi-tasking where
manual tasks compete with the human expert’s attention.
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Combined from:

— Parasuraman R, Manzey DH. Complacency and bias in human use of automation: an attentional integration.
Hum Factors. 2010;Jun;52(3):381-410. https://doi.org/10.1177/0018720810376055 (Journal full text)

— Cummings ML. Automation bias in intelligent time-critical decision support systems. In: Decision making in
aviation. Boca Raton (FL): Routledge; 2017;Jul5. p. 289-294. (Chapter abstract accessed 4 April 2025)

Bias

The tendency of a measurement process to over- or under-estimate the value of a
population parameter.

Adopted from: Council for International Organizations of Medical Sciences (CIOMS). Glossary of ICH terms and
definitions. Geneva: Council for International Organizations of Medical Sciences; 2024. (Full text accessed 4

April 2025)

In Al, bias may be systematic difference in treatment of certain objects, people, or groups
in comparison to others (ISO/IEC DIS 22989). (...) Bias can be introduced into study
design, conduct or analysis. Sources of bias include selection bias (of study sample),
operational bias, and analyses that do not account for missing data.

Modified from: International Medical Device Regulators Forum (IMDRF). Machine learning-enabled medical
devices — a subset of artificial intelligence-enabled medical devices: key terms and definitions. Geneva:
International Medical Device Regulators Forum; 2021. (Full text accessed 3 April 2025)

In the context of artificial intelligence, bias can occur when the artificial intelligence data
or algorithms reflect or perpetuate existing social inequalities, leading to discriminatory
or unfair artificial intelligence outputs.

Modified from: University of Saskatchewan. Generative artificial intelligence: glossary of Al-related terms.
Saskatoon (SK): University of Saskatchewan; 2024. (Webpage accessed 4 April 2025)

Black-Box model

An Al model that provides results based on received data but the logic used to provide
those results cannot be determined or inferred on how it achieved those results.

Proposed by CIOMS Working Group XIV.
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https://libguides.usask.ca/gen_ai/glossary#section_B

Glossary

Black Swan event

Event of extreme impact that, although outside the realm of regular expectations (i.e.
prospectively unpredictable), prompts humans to concoct explanations for its occurrence
after the fact, making it seemingly explainable and predictable (i.e. retrospectively distorted).

Combined from:

— Kjoersvik O, Bate A. Black swan events and intelligent automation for routine safety surveillance. Drug Saf.
2022;May;45(5):419-427. https://doi.org/10.1007/s40264-022-01169-0 (Journal full text)

— Taleb NN. Black swans and the domains of statistics. Am Stat. 2007;Aug 1;61(3):198-200.
d0i:10.1198/000313007X219996. (Journal full text)

Business continuity plan

Set of provisions and systems for the prevention of / recovery from events that could
severely impact on an organisation’s staff and infrastructure in general or on the structures
and processes for pharmacovigilance in particular, including the urgent exchange of
information within an organisation, amongst organisations sharing pharmacovigilance
tasks as well as between MAHs and competent authorities.

Modified from: Heads of Medicines Agencies (HMA), European Medicines Agency (EMA). Guideline on good

pharmacovigilance practices (GVP): Module | — pharmacovigilance systems and their quality systems. London:
European Medicines Agency; 2012.v (Full text accessed 3 April 2025)

Change management

Change Management describes processes, methods and techniques designed and used
to plan, implement and control changes to organizational structures and/or business
processes. Methodologies span around people, process and culture.

Typically Change Management includes following components: Leadership
alignment, Stakeholder engagement, Communication, Training, Impact Assessment,
Continuous improvement.

Modified from: International Organization for Standardization (ISO). What is change management: a quick guide.
Geneva: International Organization for Standardization; 2023. (Webpage accessed 27 October 2025)

Class imbalance

Imbalance between categories in classification tasks. This affects model performance
metrics, e.g., by the fact that a model always predicting the same outcome will be 99%
accurate if 99% of test cases belong to the corresponding class.

Adopted from: European Medicines Agency (EMA). Reflection paper on the use of artificial intelligence (Al) in the
medicinal product lifecycle. Amsterdam: European Medicines Agency; 2024. (Full text accessed 3 April 2025)

Cluster analysis

A machine learning method that partitions differing data elements into sets of data
elements based on similarities to identify patterns that are not immediately evident when
not combined.

Derived from: Jain AK. Data clustering: 50 years beyond K-means. Pattern Recognit Lett. 2010;31(8):651-666.
https://doi.org/10.1016/j.patrec.2009.09.011 (Journal full text)



https://doi.org/10.1007/s40264-022-01169-0
https://link.springer.com/article/10.1007/s40264-022-01169-0
https://doi:10.1198/000313007X219996
https://www.tandfonline.com/doi/abs/10.1198/000313007X219996
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-pharmacovigilance-practices-module-i-pharmacovigilance-systems-and-their-quality-systems_en.pdf
https://www.iso.org/contents/news/insights/information%20security/what-is-change-management.html
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf
https://doi.org/10.1016/j.patrec.2009.09.011
https://www.sciencedirect.com/science/article/abs/pii/S0167865509002323?via%3Dihub

Computerized system validation

Process of establishing and documenting that the specified requirements of a computerized
system are fulfilled consistently from design until decommissioning of the system and/or
transition to a new system. The approach to validation should focus on a risk assessment
that takes into consideration the intended use of the system and the potential of the
system to affect human subject protection and reliability of trial results.
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Modified from: International Council for Harmonisation of Technical Requirements for Pharmaceuticals for
Human Use (ICH). Integrated addendum to ICH E6(R1): guideline for good clinical practice E6(R2). Geneva:
International Council for Harmonisation; 2016. (Full text accessed 3 April 2025)

Confirmation bias

Confirmation bias is the tendency to give greater weight to data that support preliminary
assumptive results, while failing to seek or dismissing contradictory evidence.

Modified from: Elston DM. Confirmation bias in medical decision-making. Journal of the American Academy of
Dermatology. 2020;Mar1;82(3):572. https://d0i:10.1016/j.jaad.2019.06.1286 (Journal full text)

Cross-validation

Resampling method used to assess the generalisation ability of a machine learning model
and prevent overfitting.

Modified from: Berrar D. Cross-validation. Preprint submitted to Encyclopedia of Bioinformatics and
Computational Biology, 2nd ed. Amsterdam: Elsevier; 2019;542-545. (Full text accessed 3 April 2025).

Note: This is an alternative to maintaining separate training and validation data sets to
provide a more efficient use of data during development.

Data anonymisation

Anonymisation of personal data is the process whereby both direct and indirect personal
identifiers are removed, and technical safeguards are used to strive for zero risk of re-
identification.

Modified from: World Health Organization (WHO). Ethics and governance of artificial intelligence for health:
guidance on large multi-modal models. Geneva: World Health Organization; 2024. (Webpage accessed 3 April
2025)

Data drift

Change in the input data distribution a deployed model receives over time, which can cause
the model’'s performance to degrade. This occurs when the properties of the underlying
data change. Data drift can affect the accuracy and reliability of predictive models.

Modified from: U.S. Food and Drug Administration (FDA). FDA digital health and artificial intelligence glossary
— educational resource. Silver Spring (MD): U.S. Food and Drug Administration; 2024. (Webpage accessed 3
April 2025)


https://database.ich.org/sites/default/files/E6_R2_Addendum.pdf
https://doi.org/10.1016/j.jaad.2019.06.1286
https://www.jaad.org/article/S0190-9622(19)32285-6/fulltext
https://www.sciencedirect.com/referencework/9780128114322/encyclopedia-of-bioinformatics-and-computational-biology
https://www.who.int/publications/i/item/9789240084759
https://www.fda.gov/science-research/artificial-intelligence-and-medical-products/fda-digital-health-and-artificial-intelligence-glossary-educational-resource
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Data privacy

Data privacy refers to measures taken to protect the fundamental right of individuals to the
protection of their personal information. In the setting of PV, these measures emphasise
the protection of sensitive and personal data (including health data).

Proposed by CIOMS Working Group XIV.

Decision tree

A model which categorizes data into various subsets to identify a potential structure,
pattern and relationship among the data.
Modified from: Dikshit A, Pradhan B, Santosh M. Artificial neural networks in drought prediction in the 21st

century: a scientometric analysis. Appl Soft Comput. 2022;114:108080. https://doi.org/10.1016/].
as0c.2021.108080 (Journal full text)

Deep learning

A variant of machine learning involving neural networks with multiple layers of processing
units known as artificial neurons, or ‘perceptrons’ (nodes), which together facilitate extraction
of higher features of unstructured input data (for example, images, video and text).

Adopted from: Thirunavukkarasu AJ, Ting DS, Elangovan K, Gutierrez L, Tan TF, Ting DS. Large language
models in medicine. Nat Med. 2023;Aug;29(8):1930-1940. https://doi.org/10.1038/s41591-023-02448-8

(Journal full text)

Approach to creating rich hierarchical representations through the training of neural
networks with many hidden layers.

Adopted from: European Medicines Agency (EMA). Reflection paper on the use of Artificial Intelligence (Al) in
the medicinal product lifecycle. 2024. (Full text accessed 3 April 2025)

Dynamic (adaptive or continual learning) Al model

Al model that continuously learns or adapts on an ongoing basis based on exposure to new
data or changing environments during the operational phase of the Al systems lifecycle.

Modified from: International Medical Device Regulators Forum (IMDRF). Machine Learning-enabled Medical

Devices - A subset of Artificial Intelligence-enabled Medical Devices: Key Terms and Definitions. 2021. (Full text
accessed 3 April 2025)

Explainability

The degree to which humans can understand the factors and logic that have led to a
specific outcome or that play a role in the general operation of an Al system.

Proposed by CIOMS Working Group XIV.
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https://www.nature.com/articles/s41591-023-02448-8
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf

Fairness and equity

Fairness is the avoidance or mitigation of bias to provide comparable results considering
differences for a diverse group or population. Equity is the recognition of differences
in a group or population and accounting for those differences to provide a fair result.
This requires awareness and adherence to the ideas of impartiality, equality, non-
discrimination, diversity, justice and lawfulness. Avoidance and mitigation of unfair bias,
discriminatory or unjust social wellbeing and environmental impacts and/or outcomes
should be considered throughout the whole artificial intelligence lifecycle.

Proposed by CIOMS Working Group XIV.

False negative

A data point incorrectly identified as not belonging to a class of interest when it does
belong to a class of interest.

Proposed by CIOMS Working Group XIV.

False positive

A data point incorrectly identified as belonging to a class of interest when it does not
belong to a class in interest.

Proposed by CIOMS Working Group XIV.

Feature

A measurable property or characteristic of the data or engineered through data processing
or transformation of the data that is used to train a model.

Proposed by CIOMS Working Group XIV.

Generative artificial intelligence application

A computerised application using artificial intelligence methods trained on data sets that
can be used to generate new content, such as text, images, video or conduct discriminative
tasks (e.g. classification) based on prompts provided by the user.

Proposed by CIOMS Working Group XIV.

Generative Large Language Models

Probabilistic models trained on a large number of parameters that enable the processing
of natural language through algorithms specifically designed to generate text.

Modified from: Chiarello F, Giordano V, Spada I, Barandoni S, Fantoni G. Future applications of generative
large language models: a data-driven case study on ChatGPT. Technovation. 2024;133:103002. https://doi.
org/10.1016/j.technovation.2024.103002 (Journal full text)
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https://doi.org/10.1016/j.technovation.2024.103002
https://www.sciencedirect.com/science/article/pii/S016649722400052X?via%3Dihub
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Governance (for Al)

Governance refers to the human management system used to control and direct the
use of Al'in the PV system. An Al governance framework requires implementation of risk
management practices and policies to ensure adherence to the Al guiding principles.

Proposed by CIOMS Working Group XIV.

Hallucination
In generative Al, hallucinations are generated content that is presented as authoritative
but in actuality the information is incorrect or misleading.

Proposed by CIOMS Working Group XIV

Human agency
Human agency is the capacity for human beings to make choices out of their own volition
and to follow those choices to action.

Proposed by CIOMS Working Group XIV.

Human-in-command

The capability of a human to oversee the overall activity of an artificial intelligence system,
including its broader economic, societal, legal and ethical impact, and the ability to decide
if, when, and how to use an artificial intelligence system.

Modified from: European Commission. Ethics guidelines for trustworthy Al. Brussels: European Commission;
2019. (Webpage accessed 3 April 2025)

Human-in-the-loop
The capability for human intervention in every decision cycle of the artificial intelligence system.

Adopted from: European Commission. Ethics guidelines for trustworthy Al. Brussels: European Commission;
2019. (Webpage accessed 3 April 2025)

Human-on-the-loop
The capability for human intervention during the design of an artificial intelligence system
and monitoring of its operation.

Modified from: European Commission. Ethics guidelines for trustworthy Al. Brussels: European Commission;
2019. (Webpage accessed 3 April 2025)

Human oversight

Human oversight refers to the expected role of humans in the design, implementation,
monitoring, and analysis of Al in PV. It requires a framework to manage performance
and to detect and mitigate potential issues related to the Al system.

Proposed by CIOMS Working Group XIV.
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Individual Case Safety Report

The complete information provided by a reporter at a certain point in time to describe an
event or incident of interest. The report can include information about a case involving
one subject or group of subjects.

Council for International Organizations of Medical Sciences (CIOMS). Glossary of ICH terms and definitions.
Geneva: Council for International Organizations of Medical Sciences; 2024. (Full text accessed 4 April 2025)
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Knowledge graph

A heterogeneous knowledge base consisting of triples (facts) each comprised of object
pairs and connecting relationships modelled through graphs and ontologies (a standardized
machine readable semantic framework for representing all objects, and their properties
and relationships in a domain of knowledge), which extract new insights from existing
data sets via their integration.

Modified from: Hauben M, Rafi M. Knowledge graphs in pharmacovigilance: a step-by-step guide. Clin Ther.
2024;46(7):538-543. https://doi.org/10.1016/j.clinthera.2024.03.006 (Journal full text)

Large language model

A type of artificial intelligence model using deep neural networks to learn the relationships
between words in natural language, using large datasets of text to train, these include
those with or without decoders.

Derived from: Heads of Medicines Agencies (HMA). European Medicines Agency (EMA). Guiding principles on
the use of large language models in regulatory science and for medicines regulatory activities; 2024. (Full_
text accessed 4 April 2025)

Machine learning

Computational process of optimising the parameters of a model from data, which is
a mathematical construct generating an output based on input data. Machine learning
approaches include, for instance, supervised, unsupervised and reinforcement learning,
using a variety of methods including deep learning with neural networks.

Adopted from: European Medicines Agency (EMA). Reflection paper on the use of Artificial Intelligence (Al) in
the medicinal product lifecycle; 2024. (Full text accessed 3 April 2025)

(Al) Model

Mathematical or computational method with parameters (weights) arranged in an
architecture that allows learning of patterns (features) from training data to provide an
assigned output.

Modified from: European Medicines Agency (EMA). Reflection paper on the use of Artificial Intelligence (Al) in
the medicinal product lifecycle; 2024. (Full text accessed 3 April 2025)



https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/
https://doi.org/10.1016/j.clinthera.2024.03.006
https://www.clinicaltherapeutics.com/article/S0149-2918(24)00071-7/fulltext
https://www.ema.europa.eu/en/documents/other/guiding-principles-use-large-language-models-regulatory-science-medicines-regulatory-activities_en.pdf
https://www.ema.europa.eu/en/documents/other/guiding-principles-use-large-language-models-regulatory-science-medicines-regulatory-activities_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf

Glossary

Model drift (Concept Drift)

A process where the model performance changes overtime either in a positive or negative
performance outcome.

Modified from: Wang S, Schlobach S, Klein M. Concept drift and how to identify it. J Web Semant.
2011;9(3):247-265. doi:10.1016/j.websem.2011.05.003 (Journal full text)

Natural language processing
Field of artificial intelligence focusing on the interaction between computers and
human language.

Adopted from: Thirunavukkarasu AJ, Ting DS, Elangovan K, Gutierrez L, Tan TF, Ting DS. Large language
models in medicine. Nat Med. 2023;Aug;29(8):1930-1940. https://doi.org/10.1038/s41591-023-02448-8

(Journal full text)

Negative control
A real-world data point sampled as not belonging to the class of interest or deliberately
created to not trigger a positive response from an artificial intelligence model.

Proposed by CIOMS Working Group XIV.

Neural network

Computing system inspired by biological neural networks, comprising ‘perceptrons’
(nodes), usually arranged in layers, communicating with one another and performing

transformations upon input data.

Adopted from: Thirunavukkarasu AJ, Ting DS, Elangovan K, Gutierrez L, Tan TF, Ting DS. Large language
models in medicine. Nat Med. 2023;Aug;29(8):1930-1940. (Full text accessed 13 November 2025)

Non-deterministic Al

An Al system in which the same input is not guaranteed to produce the same output,
due largely to the inherent incorporation of randomness, probabilistic decision-making,
or underlying stochastic algorithms in its design.

Proposed by CIOMS Working Group XIV.

Open and Closed Large Language Models

Closed models do not release the model weights to the public and access to these
weights is restricted under proprietary licenses.

Open models provide access to model weights and are governed by non-proprietary
license enabling adaptation and ability to further investigation the model.

Modified from: Xu J, Ding Y, Bu Y. Position: open and closed large language models in healthcare [preprint].
arXiv. 2025;Jan17. doi:10.48550/arXiv.2501.09906. (Journal full text)
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Overfitting
Learning details from training data that reflect noise and will not generalize to new data.

Modified from: European Medicines Agency (EMA). Reflection paper on the use of Artificial Intelligence (Al) in
the medicinal product lifecycle; 2024. (Full text accessed 3 April 2025)

Parameter, hyper-parameter
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Variable within a machine learning model that is updated — usually automatically — during
training to maximize performance. In deep learning, parameters are the ‘weights’ or data
transforming functions comprising neural network nodes.

Adopted from: Thirunavukkarasu AJ, Ting DS, Elangovan K, Gutierrez L, Tan TF, Ting DS. Large language
models in medicine. Nat Med. 2023 Aug;29(8):1930-1940. https://doi.org/10.1038/s41591-023-02448-8
Journal full text

Hyper-parameters are parameters that are used to configure a model. Unlike model
parameters, they cannot be directly estimated from data learning and must be set before
training a machine learning model. Hyper-parameter tuning is a step often required to
build effective ML models.

Modified from Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: theory and
practice. Neurocomputing. 2020;Nov20;415:295-316. https://doi.org/10.1016/j.neucom.2020.07.061
(Journal full text accessed 15 October 2025)

Performance degradation

When results from an artificial intelligence system either fail or diminish in their ability to
achieve the expected or required results as achieved earlier.

Proposed by CIOMS Working Group XIV.

Personal data

‘Personal data’ means any information relating to an identified or identifiable natural
person (‘data subject’). Information such as a name, an identification number, location
data, an online identifier or to one or more factors specific to the physical, physiological,
genetic, mental, economic, cultural or social identity of that natural person are examples
of personal data. Sensitive (personal) data refers to special categories of personal data.

Modified from: European Parliament, Council of the European Union. Regulation (EU) 2016,/679 of the
European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to
the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation), Art. 4(1). Off J Eur Union. 2016;L 119:1-88. (Webpage accessed 4 April
2025)

Pharmacovigilance

The science and activities relating to the detection, assessment, understanding and
prevention of adverse effects or any other drug-related problem.

Adopted from: Council for International Organizations of Medical Sciences (CIOMS). CIOMS cumulative
glossary, with a focus on pharmacovigilance. Version 2.1. Geneva: Council for International Organizations of
Medical Sciences; 2024. https://doi.org/10.56759/0cef1 297 (Full text)



https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf
https://doi.org/10.1038/s41591-023-02448-8
https://www.nature.com/articles/s41591-023-02448-8
https://doi.org/10.1016/j.neucom.2020.07.061
https://www.sciencedirect.com/science/article/abs/pii/S0925231220311693
https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng
https://doi.org/10.56759/ocef1297
http://applewebdata:/92D2338F-5116-457B-BA15-49EF35CDD8A0/(Full%20text)

Glossary

Pharmacovigilance system

System used by an organisation to fulfil its legal tasks and responsibilities in relation to
pharmacovigilance and designed to monitor the safety of authorised medicinal products
and detect any change to their risk-benefit balance.

Adopted from: Heads of Medicines Agencies (HMA), European Medicines Agency (EMA). Guideline on good
pharmacovigilance practices (GVP) Module | — pharmacovigilance systems and their quality systems. London:
European Medicines Agency; 2012. (Full text accessed 3 April 2025)

Precision

Proportion of retrieved samples which are annotated as positive controls in the reference
set, calculated as the ratio between correctly classified positive controls and all samples
assigned to that class. Precision is also known as positive predictive value (PPV).

Modified from: Hicks SA, Striimke I, Thambawita V, Hammou M, et al. On evaluation metrics for medical
applications of artificial intelligence. Sci Rep. 2022;Apr 8;12(1):5979. https://doi.org/10.1038/s41598-022-

09954-8 (Journal full text)

Positive control

A real-world data point sampled as belonging to the class of interest or deliberately
created to trigger a positive response from an artificial intelligence model.

Proposed by CIOMS Working Group XIV.

Predictive model

A machine learning algorithm that analyzes data to identify patterns and trends, allowing
it to make predictions about future outcomes or events based on input data.

Modified from: De Hond AA, Leeuwenberg AM, Hooft L, Kant IM,et al. Guidelines and quality criteria for artificial
intelligence-based prediction models in healthcare: a scoping review. NPJ digital medicine. 2022;Jan10;5(1):2.
https://doi.org/10.1038/s41746-021-00549-7 (Journal full text)

Quality management system

Part of the pharmacovigilance system utilizing a framework of polices, processes and
resources to maintain and improve safety and efficacy of any product or system.

Derived from: International Council for Harmonisation of Technical Requirements for Pharmaceuticals for
Human Use (ICH). Pharmaceutical quality system Q10. Geneva: ICH; 2008. (PDF accessed 15 October 2025)

Real-world data

Data relating to patient health status and/or the delivery of health care routinely collected
from a variety of sources. Examples of RWD include data derived from electronic health
records (EHRs); medical claims and billing data; data from product and disease registries;
patient-generated data, including from mobile devices and wearables; and data gathered
from other sources that can inform on health status (e.g., genetic and other biomolecular
phenotyping data collected in specific health systems).

Adopted from: Council for International Organizations of Medical Sciences (CIOMS). Glossary of ICH terms and
definitions. Geneva: Council for International Organizations of Medical Sciences; 2024. (Full text accessed 4

April 2025)
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https://doi.org/10.1038/s41598-022-09954-8
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https://www.nature.com/articles/s41598-022-09954-8
https://doi.org/10.1038/s41746-021-00549-7
https://www.nature.com/articles/s41746-021-00549-7
https://database.ich.org/sites/default/files/Q10%20Guideline.pdf?
https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/
https://cioms.ch/publications/product/glossary-of-ich-terms-and-definitions/

Recall

Proportion of positive controls correctly classified as such, calculated as the ratio between
correctly classified positive controls and all positive controls. Also known as sensitivity
or true positive rate (TPR).

Modified from: Hicks SA, Striimke I, Thambawita V, Hammou M, Riegler MA, Halvorsen P, Parasa S. On
evaluation metrics for medical applications of artificial intelligence. Sci Rep. 2022;Apr8;12(1):5979. https://
doi.org/10.1038/s41598-022-09954-8 (Journal full text)

Red team

A group of people authorized and organized to emulate a potential adversary’s attack or
exploitation capabilities against an enterprise’s security posture. The Red Team’s objective
is to improve enterprise cybersecurity by demonstrating the impacts of successful
attacks and by demonstrating what works for the defenders (i.e., the Blue Team) in an
operational environment. Also known as Cyber Red Team.

Adopted from: National Institute of Standards and Technology (NIST). Glossary [Internet]. Gaithersburg (MD):
NIST Computer Security Resource Center; 2025. (Webpage accessed 23 October 2025)

Reproducibility

The ability to achieve consistent results when analysis is repeated under the same
conditions. Data and computer codes are used to regenerate the results.

Derived from: National Academies of Sciences, Engineering, and Medicine; Policy and Global Affairs;
Committee on Science, Engineering, Medicine, and Public Policy; Board on Research Data and Information;
Division on Engineering and Physical Sciences; Committee on Applied and Theoretical Statistics; Board on
Mathematical Sciences and Analytics; Division on Earth and Life Studies; Nuclear and Radiation Studies
Board; Division of Behavioral and Social Sciences and Education; Committee on National Statistics; Board
on Behavioral, Cognitive, and Sensory Sciences; Committee on Reproducibility and Replicability in Science.
Reproducibility and replicability in science. Washington (DC): National Academies Press (US); 2019;May 7.
Chapter 3, Understanding reproducibility and replicability. (Chapter full text accessed 27 October 2025)

Risk-based approach

A risk-based approach acknowledges the potential hazards that artificial intelligence
systems can pose and recognises that different use cases present varying types and
levels of risk in the execution of core PV tasks. This necessitates a risk assessment
that identifies, prioritises, and manages potential risks that could negatively impact a
pharmacovigilance system’s behaviour and results, taking into consideration process
controls. A risk is characterised by both the anticipated impact and the likelihood of
negative outcomes.

This approach also supports procedures to identify and reduce errors and biases in a
way that is proportionate to their risk. It influences the implementation strategies of Al
systems, which should generally be commensurate with the identified risk.

Proposed by CIOMS Working Group XIV.


https://doi.org/10.1038/s41598-022-09954-8
https://doi.org/10.1038/s41598-022-09954-8
https://www.nature.com/articles/s41598-022-09954-8
https://che01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcsrc.nist.gov%2Fglossary%2Fterm%2Fred_team&data=05%7C02%7Chills%40cioms.ch%7Ccad5b5288a094036a29e08de124a637c%7C75c195b91bd748808b00cd808d6fa23b%7C0%7C0%7C638968307861614033%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=cJ2Zx88pe%2FJKUT1DA43cNZgQdHgeTFOuJ4EUGMoR5mw%3D&reserved=0
https://www.ncbi.nlm.nih.gov/books/NBK547546/

Glossary

Robustness
A system reliably achieves its intended objectives while accounting for variations in data.

Proposed by CIOMS Working Group XIV.

Secondary Use of Data

Use of existing data for a different purpose than the one for which they were originally
collected. In the setting of Al this could include data used for the purposes of training
or validating a model.

Modified from: Council for International Organizations of Medical Sciences (CIOMS). Glossary of ICH terms and

definitions. Geneva: Council for International Organizations of Medical Sciences; 2024. (Full text accessed 4
April 2025)

Semantic vector

A mathematical representation of a word, phrase, or document as an identifier, where the
identifier's position in the high-dimensional space captures the meaning or relationship
of that word/phrase, allowing artificial intelligence systems to understand the context
and similarity between different pieces of text based on their meaning.

Derived from: Cohen T, Widdows D. Empirical distributional semantics: methods and biomedical applications. J
Biomed Inform.2009;Apr1;42(2):390-405. https://doi.org/10.1016/}.jbi.2009.02.002 (Journal full text)

Sensitivity analysis

An assessment technique used to evaluate how changes in input data or model parameters
affect the output of an artificial intelligence model.

Proposed by CIOMS Working Group XIV.

Signal

Information that arises from one or multiple sources (including observations and
experiments), that suggests a new potentially causal association, or a new aspect of
a known association, between an intervention and an event or set of related events,
either adverse or beneficial, that is judged to be of sufficient likelihood to justify further
action to verify.

Modified from: Council for International Organizations of Medical Sciences (CIOMS). Practical aspects of signal

detection in pharmacovigilance. Geneva: Council for International Organizations of Medical Sciences; 2010.
(Full text accessed 15 October 2025)

Static Al model
Al model that remains unchanged once deployed.

Proposed by CIOMS Working Group XIV.
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Supervised learning
Machine learning that makes use of labelled data during training. (ISO/IEC DIS 22989).

Adopted from: International Medical Device Regulators Forum (IMDRF). Machine learning-enabled medical
devices — a subset of artificial intelligence-enabled medical devices: key terms and definitions. Geneva:
International Medical Device Regulators Forum; 2021. (Full text accessed 3 April 2025)

Test dataset

A subset of the data that is never shown to the machine learning model during training,
used to verify what the model has learned. (Modified from ISO/IEC DIS 22989).

Adopted from: International Medical Device Regulators Forum (IMDRF). Machine learning-enabled medical
devices — a subset of artificial intelligence-enabled medical devices: key terms and definitions. Geneva:
International Medical Device Regulators Forum; 2021. (Full text accessed 3 April 2025)

Traceability (Al)

The ability to track and document the data, processes, classifications used to create an
artificial intelligence model and derived output.

Proposed by CIOMS Working Group XIV.

Training

Process intended to establish or to improve the parameters of a machine learning model,
based on a machine learning algorithm, by using training data. (Modified from ISO/IEC
DIS 22989).

Adopted from: International Medical Device Regulators Forum (IMDRF). Machine learning-enabled medical
devices — a subset of artificial intelligence-enabled medical devices: key terms and definitions. Geneva:
International Medical Device Regulators Forum; 2021. (Full text accessed 3 April 2025)

Training dataset

Data used specifically in the context of machine learning: it serves as the raw material
from which the machine learning algorithm extracts its model to address the given task.

Adopted from: European Medicines Agency (EMA). Reflection paper on the use of Artificial Intelligence (Al) in
the medicinal product lifecycle; 2024. (Full text accessed 3 April 2025)

Transparency

Transparency regarding Al involves disclosing information between organisations or
individuals. This includes sharing relevant documentation of the Al system lifecycle (i.e.
design, development, evaluation, deployment, operation, re-training, maintenance and
decommission) to facilitate traceability and providing stakeholders with enough information
to have a general understanding of the Al system, its use, risks, limitations, perceived
benefits and impact on their rights.

Proposed by CIOMS Working Group XIV.

©
o
wn
wn
Q
=
<
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https://www.imdrf.org/sites/default/files/2021-10/Machine%20Learning-enabled%20Medical%20Devices%20-%20A%20subset%20of%20Artificial%20Intelligence-enabled%20Medical%20Devices%20-%20Key%20Terms%20and%20Definitions.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf

Glossary

Unsupervised learning
Machine learning that makes use of unlabelled data during training. (ISO/IEC DIS 22989)
Adopted from: International Medical Device Regulators Forum (IMDRF). Machine learning-enabled medical

devices — a subset of artificial intelligence-enabled medical devices: key terms and definitions. Geneva:
International Medical Device Regulators Forum; 2021. (Full text accessed 3 April 2025)

Validity

Validity means that a system achieves its intended purpose within acceptable parameters.
It requires predefining acceptable performance levels, selecting appropriate data for
model training and/or testing, assessing model performance in a realistic setting and
integrating the system into an ongoing quality assurance process.

Proposed by CIOMS Working Group XIV.

Validation dataset

Data used to tune hyperparameters or to validate some algorithmic choices (rule
design, etc.).

Derived from: International Organization for Standardization (ISO). ISO/IEC DIS 22989. Information technology
— artificial intelligence - artificial intelligence concepts and terminology. Geneva: International Organization for
Standardization; 2022. (Webpage accessed 4 April 2025)

Zero-shot learning

Artificial intelligence developed to complete tasks without exposure to any previous
examples of the task.

Derived from: Thirunavukkarasu AJ, Ting DS, Elangovan K, Gutierrez L, Tan TF, Ting DS. Large language
models in medicine. Nat med. 2023;Aug;29(8):1930-1940. https://doi.org/10.1038/s41591-023-02448-8
(Journal full text)
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APPENDIX 3.
USE CASES

The use cases presented in this appendix serve as practical illustrations for applying Al
within PV. These cases provide insight into the potential applications of Al across various
subdomains and highlight the methodologies, limitations, and associated performance with
the integration of Al methodologies. Each use case exemplifies specific Al solutions across the
current PV lifecycle offering readers a practical example of how Al can transform workflows,
enhance efficiency, and ultimately contribute to improved patient safety.

Utilising these use cases appropriately requires an understanding of the principles that have
been described in this guidance, and how some of these have guided the development and
implementation of the use cases. It is important to note that the use cases pre-date this
guidance and therefore not all principles may have been considered.

Readers are encouraged to analyse the context, objectives, and outcomes of each case study
to derive meaningful insights for their organisational needs. By systematically evaluating the
alignment of each Al solution with the governance framework outlined in the main report,
stakeholders can identify best practices and potential pitfalls in Al integration, fostering a
responsible approach to adopting Al technologies in PV.

Moreover, the use cases highlight the importance of adhering to the key guiding principles.
Through consideration of these examples, organisations can gain valuable perspectives that
drive innovation while safeguarding the integrity of their PV systems.
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Use cases

Use Case A: Large Language Models data extraction
for case processing

Source:!
Area of PV: ICSR Processing

Al. Business rational and challenges

The GVP refer to the set of guidelines and standards established by EMA to ensure the
safety and efficacy of pharmaceutical products throughout their lifecycle. These practices
are essential for the systematic monitoring, assessment, and management of adverse drug
reactions. Pharmaceutical companies must act on reports of potential adverse reactions to
drugs to protect public health by ensuring that potential risks are identified and addressed
promptly. With significant increases in the number of case reports in recent years, case intake/
processing operations face complex challenges beyond the number of cases, such as
handling very diverse data sources including unstructured texts and scanned documents or
managing sudden peak inflows with a finite workforce. With the complexity of the relevant data
points ranging from simple demographics to more complex lab values, simpler technology
approaches like Named Entity Recognition, that identify and categorise key information
using pre-defined annotations from unstructured sources, such as name(s) of reported AE,
reporter qualification, countries, and specific terms, to analyse and extract relevant data,
were unsuccessful in consistently improving case intake/processing operations under
real-world circumstances. The use of LLMs in case intake/processing provides potential to
advance processes without compromising quality. However, LLM-based tools should undergo
periodic re-evaluation to monitor model drift effectively. Additionally, training and calibration
processes must ensure that all identifiable data handling complies with GDPR and HIPAA
regulations to safeguard data privacy and maintain compliance.

A2. Solution

A pharmaceutical company executed a proof-of-concept (PoC) study to assess the feasibility
as well as the quantitative and qualitative business impact of utilising LLMs for case intake
purposes. Specifically, LLMs were applied for data extraction from source documents for
case intake and processing while covering regulatory and compliance aspects.

To process the selected source documents and extract pre-defined pieces of information,
a three-step semi-automatic processing pipeline was set up. The pipeline consisted of (1)
pre-processing steps to unify the input for the LLM (OpenAl’s GPT-4), (2) a JSONi-formatted
extraction template that guided the LLM in structuring the information as well as providing
hints regarding the location of the information in the source data, and (3) post-processing
steps to match the model output with fields where predefined values were applicable.
Redacted copies of source documents were augmented by references and highlighting of
extracted key terms.

For the assessment of the business impact of using LLMs for case intake, a selection of
representative cases was identified. A graphical user interface (GUI) was designed for the
purpose of comparing the processing performance of (a) the fully manual process vs (b) the
manual process augmented by fields pre-filled by the results of the LLM extraction pipeline.

JSON = JavaScript Object Notation



Four experienced professionals were randomly assigned to either process version (a) or
(b). The processing times were tracked for each source document to derive the overall
processing time regarding extraction of the representative set of fields.

A3. Results

In this study, two key results were derived from the implementation of LLMs in the case
intake and processing operations:

The first result focused on the performance of the LLM model, measured through the match
scores of all extracted fields and averaged across cases of a category for the full number
of source documents in scope of this study. The statistical evaluation revealed that the
model achieved match scores, ranging from 85% to 100% for clinical studies, and 60% to
100% for patient support programs (PSP) cases. For literature cases, while the sample size
precludes a robust statistical evaluation, model performance ranges from 67% to 100%,
suggesting qualitative results that align with the other types.

The high match scores achieved by the model demonstrate its capability to extract accurate
and relevant information from unstructured sources. This can be translated into tangible
efficiency gains for business operations.

The second result highlighted the efficiency gains identified in the business impact assessment.
The implementation of LLM in case intake led to an estimated efficiency gain of 39%,
translating to time savings of approximately 20 minutes per case. Specifically, the study
found that the average number of data points extracted per case was 69.4, with only 2.4
data points requiring manual correction.

Implementing LLMs is not just a technical enhancement; it represents a strategic move
towards improving operational efficiency and ensuring high-quality outcomes in PV practices.

A4. Challenges and Lessons Learned

The learnings of this PoC converged into five key Points to Consider (PtC), which can be
used as a springboard to support future research. Taking a practical industry perspective
as well as relating the observations to scientific work in the field, the authors reflect on
enabling innovative technologies and the experience shared, while preliminary, should aid
others working in this space.

1. The Return of Investment (Rol) needs to be measurable in a business context:
The Rol for implementing LLMs must be quantifiable, as they can yield significant
efficiency gains (in this PoC up to 39%), translating into financial benefits and increased
team productivity.

2. Early involvement of SMEs increases Rol:

Engaging SMEs early is essential for optimising model performance, enhancing process
understanding, and enables effective prompt engineering, ultimately leading to improved
reliability and resource efficiency while addressing limitations of LLMs to increase Rol.

3. Regulatory uncertainty remains a significant hurdle:

Regulatory uncertainty poses a significant hurdle for compliance with GxP standards in
Al technologies, as the evolving regulatory landscape from major health authorities like
the EMA and US FDA creates challenges that necessitate proactive risk management

c
7]
[¢]
o
Q
0
D
(7]




Use cases

and practical, solution-oriented approaches to ensure validation and accuracy in real-
world applications.

4. System integration needs to be contextualised in the operational environment:

System integration of LLMs must be contextualised within the operational environment,
taking into account existing system limitations and user requirements to derive meaningful
study results, while emphasising the importance of a prompting strategy and dedicated
pre-processing and post-processing for effective embedding in established safety solutions.

5. Organisational readiness goes beyond technology:

Organisational readiness for adopting new technology extends beyond mere technological
capabilities, requiring human involvement, sufficient trust, and robust oversight, which
can be fostered through early engagement with operational teams, mindset shifts,
awareness, training, and process readiness to mitigate potential inhibiting factors and
facilitate effective study conduct.

To effectively implement these key Points to Consider, a risk-based approach can serve
as a strategic framework that aligns assessment of potential impact of inaccuracies on
patient safety, development of effective mitigation strategies for false positives and ensure
compliance; continuous monitoring and evaluation of the LLM's performance and optimisation
of the integration of this technology into existing system.

A4. Compliance with the governance framework

Table 11: Use case A: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle Activities SPEC DEV PreD PstD RU
Risk-based |To categorise risks associated with the A A N/A [N/A |N/A
approach implementation of Large Language Models

for data extraction in case processing, it is
essential to assess the potential impact
of inaccuracies on patient safety and
pharmacovigilance outcomes. Additionally,
stakeholders should be engaged to
develop effective mitigation strategies

for false positives and ensure compliance
with regulatory requirements, including
GDPR and HIPAA. Continuous monitoring
and evaluation of the LLM's performance,
alongside robust training for users, will be
critical to managing risks and optimising
the integration of this technology into
existing pharmacovigilance systems.

Human Implementation of dedicated features to A A N/A IN/JA [N/A
oversight support human oversight, including user-
friendly interfaces and references to the
source data. The 100% human QC ensures
robustness of all extraction outputs.
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Principle Activities SPEC DEV PreD PstD RU

Validity & No continuous learning is applied; rather, A A N/A IN/A |N/A
robustness | the model is used in a locked state.
Releases of new versions are quality
assured on a sufficiently broad test set to
derive.

Transparency | Model performance has been measured A A N/A IN/A |N/A
with match score. The correction of the

failures can be used as feedback in regular
intervals to improve the prompting strategy.

Data Privacy | The service is established on a private A A N/A IN/A |N/A
cloud. Access is provided only to project
team members. Personally identifiable
information is redacted prior to the actual
data extraction step.

Fairness & Not applicable. The application is not N/A  [N/A [N/A [N/A | N/A
Equity providing any data consolidation or decision
support. The 1:1 match of the data
extraction is verified by the human QC.

Governance | The LLM model is using tailored prompting |A A N/A IN/A | N/A
& strategy maintained on vendor domain
Accountability | to test the data extraction. The model is
provided by Open Al, and is powered by a
selection of Large Language Models.
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The case intake and processing team takes
over the accountability and performs the
100% human QC process. The ultimate
accountability remains with the MAH.

Abbreviations

SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use

A: Applicable

NA: Not Applicable
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Use cases

Use Case B: Case deduplication

Source:?
Area of PV: ICSR Processing

B1. Business rational and challenges

Adverse event reporting systems (AERS) are essential in PV as they support the identification
and evaluation of safety signals related to the use of medical products. Expert review in safety
monitoring involves several steps, such as data mining and case series analysis, which are
significantly affected by the AERS data quality. A representative example of quality issues
is duplication, where more than one report describes the same patient case and the same
AE experience for the same product. Duplicate reports may result in false or missed safety
signals and increase the workload for safety evaluators by misinterpreting the actual number
of true AEs and making a product-event relationship look weaker or stronger.

B2. Solution

A regulatory agency that maintains an AERS for drugs and biologics with >28 million historical
reports and an average of 8,000 new submissions daily sought an efficient solution to
deduplicate all historical and incoming AE reports. The regulatory agency collaborated with
an academic partner to address this issue by developing a deduplication pipeline relying
on modern technologies (mainly, NLP, network analysis, and cloud computing) and utilising
structured data and free-text narratives. The pipeline executes an initial pass to filter down the
pairs of reports by placing minimum requirements on similarity based on demographic data
and other features. Subsequently, a pairwise streamlined worker implementing a duplicate
detection algorithm performs a probabilistic comparison of all qualifying report pairs and
calculates two scores, a probabilistic weight score and a second component score value,
that together rate how similar the two reports are. In the third step, the pairs exceeding a
preselected validated threshold that was specified in a dedicated analysis are merged into
networks (a.k.a. groups) of potentially duplicate reports and split into tightly linked communities
(a.k.a groups) of actual duplicates. Finally, a reference case selection component identifies
the most representative report in each duplicate group based on several parameters and
the remaining reports in the group are flagged as duplicates and they are excluded from
subsequent data mining calculations. An existing decision-support tool developed to support
the case series analysis allows for evaluating the groups of duplicate reports and verifying
the reference case, keeping medical reviewers in-the-loop.

B3. Results

In an early research study, the duplicate detection algorithm was applied to two datasets
of post-market reports, one including vaccine product reports and one containing reports
for biologics, identifying 77% and 13% of known duplicate pairs, respectively, with (nearly)
perfect precision in both cases (95% and 100%, respectively).3 This algorithm was refined in
subsequent steps to reach acceptable levels of performance that, in some cases and based
on new evaluations using drug AE reports, supported the detection of duplicate pairs with
an F-measure >0.9. The medical reviewers who participated in this new evaluation round
felt confident about the algorithm and expressed their interest in using it, as discussed
in the corresponding publication.4 Subsequently, the medical reviewers generated a gold
standard of 2300 reports with labelled duplicates in a systematic process to support



the validation of the recently built deduplication pipeline, which was then compared with
existing deduplication approaches used at the regulatory agency. The deduplication pipeline
outperformed these approaches and was approved for processing all historical reports and
incoming live data in an ETL process (extract, transform, and load process). As of July 30,
2025, the pipeline, installed on the AWS environment and tightly integrated with the agency’s
AERS, has screened >30 million historical reports and continues deduplicating an average
of 8,000 new submissions daily.

B4. Challenges and lessons learned

The deduplication pipeline was developed through a multi-year investigation, which involved
investing various human and other resources to achieve the desired performance and
facilitate the migration of this solution into the production environment. Still, a validated and
transparent Al-based solution that outperforms existing ones and is freely available to the
regulatory agency along with its underlying code, opens several opportunities to leverage
the deduplication output and integrate the pipeline into existing systems. This maximises
the benefits and eliminates the considerable costs associated with proprietary tools.

As this deduplication actively processes large AERS data daily and the output cannot be
reviewed and confirmed by humans, it is essential to develop a strategy to ensure that the
performance demonstrated in all evaluation rounds remains consistently high. A solid QA
plan is not yet in place and presents a significant challenge to building more trust within
the user community. On the other hand, the decision-support tool mentioned above and
described in Figure 8 enables review of groups of duplicate reports and confirmation of
the case that best represents the reported AE, namely the reference case. Although this
process occurs in a case series analysis setting and cannot be done for all data, it may
support a QA plan through this more limited evaluation of smaller data sets. This approach
will indicate whether performance remains at the same level and if any correction strategies
are necessary. The regulatory agency carefully reviews these aspects and plans to conduct
periodic audits through this or other mechanisms as part of a QA strategy.
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Use cases

B5. Compliance with the governance framework

Table 12: Use case B: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle

Risk-based
approach

Activities

A risk-based approach has been discussed
extensively, especially regarding missed

or false positive duplicate reports. It has
been determined that implementing the
pipeline in the decision-support system,
with humans-in-command, eliminates

any risks for the case series analyses.
What remains to be done is acknowledging
any risks for data mining calculations and
potential noise in signal detection; this part
has not yet been fully developed and mostly
affects the routine use of deduplication for
data mining calculations and not its use in
case series analyses that is currently fully
implemented.

SPEC
A

DEV PreD PstD RU

A

A

A

A

Human
oversight

Human experts actively provided feedback
to the software engineers during the
development stage and evaluated the
deduplication output to refine and validate
the pipeline. Human experts can confirm or
modify the reference case selection using
an existing decision-support tool while
conducting their case series analyses in the
routine use setting. Periodic audits during
the routine operation of this deduplication
pipeline are essential to ensure the
performance shown in the pre-deployment
phase remains consistently high.

A

Validity &
Robustness

The deduplication pipeline has been
evaluated and validated to ensure it meets
expectations and serves its intended
purpose. The effect of deduplicated data on
data mining calculations and the discovery
of potential safety signals, which is one

of the major uses of deduplication output,
has not yet been investigated.

Transparency

Several publications, technical reports,
and other documentation describe the
pipeline and results of all evaluations
conducted with safety reviewers’
assistance.
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Principle Activities SPEC DEV PreD PstD RU

Data Privacy | Fully complying with the principle as all A A A A A
processing occurs in a secure cloud
environment.

Fairness & The deduplication pipeline has been A A A A A
Equity evaluated and validated in several rounds
and is closely monitored in the post-
deployment phase. The pipeline is fully
migrated to the production environment to
be routinely used at the time of writing this
report; it is therefore marked as partially
aligned since this process has not been
completed yet.
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Governance | System administrators have full control A A A A A
& and continuously monitor the deduplication
Accountability | pipeline as well as the use of its output

in the decision-support tool. A plan has

also been developed to incorporate the
deduplication output in the data mining
calculations. Clearly defined roles were
specified in the development, pre-
deployment, and post-deployment stages,
where the Contractor led the pipeline’s
construction and incorporation into the
decision-support tool and the existing
environment at the regulator’s site, assisted
by the end users and other stakeholders.
Roles have not yet been fully assigned in
the routine use setting.

Abbreviations

SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use

A: Applicable

NA: Not Applicable
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Use Case C: Artificial intelligence
translation assistant

Source:®
Area of PV: ICSR reporting

C1. Business rational and challenges

Processing of ICSRs starts with the collection of information from the worldwide markets
and the intake into the electronic database system/workflow. Typically, this involves many
languages which require translation into English for the further processing steps by the
global functions. Translation plays a crucial role as errors in the translation can lead to
misunderstandings and wrong conclusions downstream. Furthermore, manual translation
requires time and effort and coverage of all markets/languages by well-trained translators
can be a challenge.

In the current example the pharmaceutical company had engaged with a vendor to consolidate
and streamline the global case intake and translation process. The vendor had established
two hubs in Europe and Asia to cover 16 languages across 32 countries replacing a
distributed network of multiple local country organisations and local vendors. To further
increase productivity, the vendor had been requested to automate the translation process.

C2. Solution

While processing foreign language adverse event reports, about half of the effort was
required for accurate translation of source documents from local languages to English,
enabling centralised case management in English and subsequent submission to authorities.
The pharmaceutical company and the vendor formed a common project team consisting
of experts on ML and PV associates to pilot an Al-powered translation assistant based on
commercially available technology. The team had set up a private cloud environment to store
learning data (source texts and human-edited translations) and developed a user interface to
input original text and retrieve and (if necessary) edit the result. The system automatically
stores and analyses any modifications done by the users to enable further learning iteration
and improvement of the first-time quality of the Al translation assistant. A 100% QC by a
human translator of all the translations was established to always verify the accuracy of the
translation. The solution facilitates continuous learning through the automated integration
of the manual edits into the translation model in defined regular intervals. With each model
update the relevant quality measures (BLEU scores, see below) are re-calculated. Until today,
the 100% QC by the HITL has been kept.

C3. Results

The translation’s quality was assessed by BLEU scores. BLEU is a metric for evaluating
machine-translated text. The BLEU score is a number between zero and one that measures
the similarity of the machine-translated text compared to a set of high-quality reference
translations. Within six months, the Al translation assistant mimicked the quality of a human
translator (i.e. BLEU equal or greater than 0.6).6

The results of the Al Translation Assistant pilot for the first language (Portuguese) were
leading to a reduction of translation efforts by approximately 30%. Hence the solution



was extended to five further languages (Chinese, Dutch, French, German, and Spanish).
The pharmaceutical company and vendor teams are jointly and continuously evaluating the
BLEU score to monitor the quality of the solution.

Improving the Al model is a function of case volume as every revised sample translation
provided by the QC team helps to improve the model. More samples make better models,
and better models finally reduce the effort for the team, allowing them to work through more
cases faster and with greater consistency.

C4. Challenges & Lessons Learned

Since the launch of the Al Assistant for Translation in 2021, translation quality has further
improved, with less than 10% of outputs needing human corrections. The team is considering
shifting from full human quality checks to sample-based monitoring, adjusting sample sizes
as needed by language.

With the rise of GenAl since 2022, these tools now offer multiple features, such as extracting
structured data, translating information, preparing case summaries, and translating reports
for non-English regions, all within a single platform. Currently, several projects are under
way to implement GenAl into the (commercial) applications available for ICSR management.
These platforms again have the potential to increase the efficiency in ICSR management
drastically. For now, the HITL will play a crucial role to ensure high quality.

C4. Compliance with the governance framework

Table 13: Use case C: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle Activities SPEC DEV PstD RU

PreD
Risk-based | Translation of incoming information bears |A A A A A
approach the risk of mistakes, which may lead

to wrong conclusions or assessments
downstream. Therefore, a risk-based
approach has been followed thoroughly and
consequently measures have been taken to
ensure full and continuous human oversight.

Human To ensure human oversight, a 100% human | A A A A A
oversight QC of the translated text by the vendor
translators was established from the
beginning. The BLEU scores are regularly
measured for each language to identify
changes in the overall performance.

Validity & The system has been implemented A A A A A
robustness | following the vendors standard validation
approach. The 100% human QC ensures
validation of all translation outputs.

Any failure of the translation assistant would
be immediately detected and corrected.

ARTIFICIAL INTELLIGENCE IN PHARMACOVIGILANCE E
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Principle

Transparency

Activities

Transparency of the translation
performance is obtained as all translations
are tracked by the system as well as any
edits by the human translator. These edits
are used at regular intervals to improve the
model.

SPEC

DEV

PreD
A

PstD RU

Data Privacy

The service is established on a private
cloud. Access is provided only to project
team members. Personally identifiable
information is redacted prior to the actual
translation process. The original source
document remains available only for

the local team who received the initial
information and who may have to follow-up
with the initial reporter.

Fairness and
Equity

The application is not providing any
interpretation of data, consolidation,

or decision support. In the event that
certain words or expressions (e.g. popular
language) are not known to the Al assistant,
the human translator steps in during the
QC. The 1:1 match of the translation is
always verified by the human QC.

Governance
&
Accountability

The translation assistant is a standalone
tool owned by the vendor company.
Hence, the regular lifecycle governance is
executed by the vendor and available on
request to the pharmaceutical company.
It concerns, e.g. the update of the model
based on learning progress.

While the responsibility for the execution

of the translation lies with the vendor,

the ultimate accountability remains with

the pharmaceutical company. Hence,

in addition to the 100% human QC process
by the vendor, the pharmaceutical company
is doing a defined sample QC of the

overall case intake results, including the
translation.

Abbreviations

SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care

RU: Routine Use
A: Applicable
NA: Not Applicable
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Use case D: Large Language Models for context-
aware Structured Query Language

Source Article:”
Area of PV: Safety analysis

D1. Business rational and challenges

Safety scientists are often reliant on technical teams for safety query formulation and
extraction of data from safety databases using SQL, which can introduce delays in assessment.
The aim therefore was to enhance the accuracy of information retrieval from PV databases
by employing LLMs to convert natural language queries (NLQs) into SQL queries, leveraging
a business context document.

D2. Solution

A sandboxed version of OpenAl's GPT-4 model was utilised within a RAG framework, enriched
with a business context document, to transform NLQs into executable SQL queries. The study
was conducted in three phases, varying query complexity, and assessing the LLM’s performance
both with and without the business context document.

The RAG framework facilitates the transformation of NLQs into SQL queries by harnessing
its retrieval mechanism to access relevant information from the business context document.
This enriched contextual data is then provided as input to the GPT-4 model, enabling it to
generate SQL queries that are aligned with the specific schema and operational requirements.

D3. Results

Results showed significant improvements in query generation accuracy across three
experimental phases. In Phase 1, using only the database schema, the LLM achieved a pass
rate of 8.3% with 78.3% failing to generate valid SQL queries, highlighting the challenges of
generating accurate SQL queries without contextual information. In Phase 2, the addition of
a business context document increased the pass rate to 78.3%, and achieved a statistically
significant improvement (P-value: 0.0006) compared to Phase 1. In Phase 3, which used a
narrowed schema without the business context document, showed modest improvements
reducing the failure rate from 78% to 50% compared to Phase 1, but did not match the
performance achieved in Phase 2.

The method is an assistive method to enable non-technical users to perform complex data
queries, potentially enhancing timeliness of PV data analysis and reporting.

D4. Challenges & Lessons Learned

The study highlighted challenges in automating SQL query generation for PV databases
using LLMs. One limitation was the difficulty in handling high-complexity queries, as the LLM
struggled to generate accurate SQL code when faced with intricate database relationships
and ambiguous user intents. This challenge was particularly evident in Phase 1, where the
absence of contextual knowledge resulted in a failure rate of 78.3%. While the introduction
of a business context document in Phase 2 significantly improved performance, achieving
a pass rate of 78.3%. Another consideration for implementation would be the need for
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Use cases

domain experts to construct and maintain the business context document, as updates to
the database schema could impact its utility.

D5. Compliance with the governance framework

Table 14: Use case D: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle

Risk-based
approach

Activities

Within this study, the intent is to
demonstrate use of natural language to
generate SQL queries to retrieve data
from a safety database. The risk-based
approach should consider the feasibility of
implementation, controls and processes
needed to ensure its trusted use.

SPEC

A

DEV PreD PstD

A

N/A

N/A

RU
N/A

Human
oversight

Within the PoC human experts reviewed
the relevance of the outputs against a
reference standard.

Within a product setting consideration
would need to be given to how human
oversight will ensure robustness of the
outputs, including confirming if the correct
data has been extracted. As the database
schema may change, thought should also
be given to monitoring performance over
time and at defined intervals.

N/A

N/A

N/A

Validity &
Robustness

The tool has been evaluated against a
curated reference standard. Beyond the
PoC, consideration would need to be
given to generalisability in production use
including ensuring outputs are correct
based on the user’s requirement.

N/A

N/A

N/A

Transparency

Whilst there is transparency of the GPT
model, the use of RAG and context specific
documentation provides transparency of
the pipeline and how data is processed to
achieve the output.

N/A

N/A

N/A

Data Privacy

This is an assistive tool not using individual
patient data to generate SQL outputs.

N/A

N/A

N/A

N/A

N/A

Fairness &
Equity

This is an assistive tool that does not use
individual patient data to generate SQL
outputs.

N/A

N/A

N/A

N/A

N/A
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Principle Activities SPEC DEV PreD PstD RU

Governance |During the PoC, the accountability of the A A N/A IN/A |N/A
& methodology remains with the developer.
Accountability | However, if the methodology is integrated
into a production setting, accountability
would transition to the human subject
matter expert.
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Governance within a PoC ensures scientific
integrity principles are adhered to, while
future product use governance should
cover how the tool fits into the overall PV
system and QMS.

Abbreviations

SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use

A: Applicable

NA: Not Applicable
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Use Case E: Causality assessment of adverse drug
reactions

Source:8
Area of PV: Causality Assessment

E1l. Business rational and challenges

Assessing the causal relationship between an adverse event and the patient’s exposure to a
drug is a critical part of the PV process, determining the expedited reporting requirements
for each ICSR. Causality assessment is a time-consuming process requiring manual review
by medical experts who evaluate data in the case with data from external sources (e.g.
drug labels, scientific publications, drug mechanism of action, and disease symptoms). As the
volume of adverse events to be reviewed increases an opportunity exists to create solutions
that leverage ML to support the medical experts by predicting causality assessments.

E2. Solution

The authors of this paper created a modelling feature set comprising of various data
attributes from solicited cases from the pharmaceutical company’s safety database relevant
to causality assessment of drug-event combinations. This was supplemented by engineered
data features comprising external data and data from other internal sources. The resulting
training data schema (shown below) was selected as it provides a comprehensive set of
features relevant to the causality assessment process.

Table 15: Use case E: Modelling Data

Source: Modified from Cherkas Y, et al, 2022 9 Table reproduced with permission

Modelling Data

Case Level Data External Sourced Data
Causality Label Medical History Exclusions Disproportionality
Rechallenge Drug Exclusions Anatomical Therapeutic
Class & System Organ Class
Labeledness Temporal Relationship
Reporter Causality Temporal Compatible

In parallel, a separate decision support tool (CASCADE) was developed and validated through
consultation with experienced drug safety physicians. A decision tree structure was adopted
due to its increased transparency and interpretability when compared to other causality
assessment algorithms. This increased transparency and interpretability allow a clear statement
of the rationale for the assessment to be written (e.g. “The case is deemed causally related
as it is (a) Labelled for the event (b) The event has a plausible temporal relationship, etc.”).

The work on the decision tree provided a basis for the subsequent predictive model, informing
contributing factors and the topology of the resulting Bayesian Network model. The authors’
rationale for selecting this type of model include: the ability to combine multiple sources
of information with expert knowledge, transparency and interpretability, and their capability
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to model complex frameworks with causal dependencies where a lot of uncertainty exists.
Model training utilised an annotated dataset of 50k cases, with a separate test dataset of
20k cases. Both the training and test dataset represented a broad range of drug classes
and event categories. All cases had been previously assessed by medical experts and were
taken from a period where the causality assessment practices were consistent.

E3. Results

The model demonstrated high performance (sensitivity was 0.900, with PPV of 0.778) in
predicting the causality assessment of drug—event pairs compared with clinical judgment
using global introspection. The authors also explored a learned topology Bayesian Network
model with the same training data. The learned topology model was found to have inferior
performance compared to their CASCADE-based model.

E4. Challenges and lessons learned

Data availability presents several challenges but also opportunities for improving the model
through addition of new features and allowing further validation of model performance.

The lack of well-annotated causality data from additional sources limited the exploration of
the model's performance for drug-event combinations not included in the internal data set.
Creation of a public reference set, while itself likely to be challenging, introduces opportunities
to validate such models and compare their performance with other methodologies across
a wider spectrum of drugs and events.

The study used a limited set of related clinical trial cases to establish an estimate of plausible
time-to-onset between exposure to the drug and the event onset. More comprehensive
datasets (e.g. EHRs) containing such data could provide potential for improving this feature
of the model design. Use of drug mechanism of action data in the time to onset feature may
also help improve model performance.

Access to drug label data would support the addition of features to identify whether events
are labelled for any drugs in the case or drugs from the same class as the drug under review.
Similarly, incorporation of data on medical conditions and drug indications might be used to
identify confounders, including whether the reported reaction is a symptom of an existing
medical condition or associated with a concomitant medication’s indication.

Variability in the causality assessments for drug-event pairs is well documented and presents
a potential challenge in ensuring transparency when designing models to support this
activity. The development of a validated decision-tree tool (CASCADE) provided a structured,
consistent, and transparent approach that helped inform the topology of the resulting model
and demonstrated the value of integrating expert clinical knowledge into ML models although
interpretability of the model remains a challenge that needs to be addressed.
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Use cases

E5. Compliance with the governance framework

Table 16: Use case E: Alighment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle

Risk-based
Approach

Activities

The scope of the work and resulting model
was limited to solicited, post-marketing
cases. The Automating the causality of
assessment of these cases was determined
to have a lower risk/ impact to the PV
system.

SPEC

A

DEV PreD PstD

A

N/A

N/A

RU
N/A

Human
Oversight

Drug safety physicians and SMEs were
involved in the data review and model
development activities, ensuring the
applicability of the model to its intended
purpose. There is no discussion about

the creation of a quality management
framework to support human oversight for
(future) production use.

N/A

N/A

N/A

Validity &
Robustness

The use case and deployment domain are
described in the paper. The data used in
this study were limited to a specific period
where causality assessment methods were
consistently applied across a broad range
of product and event categories to increase
the reliability of the resulting model. Model
training and testing activities are described
in detail, as is the approach used for
performance assessment. The authors
consider areas for investigation that could
be used to further demonstrate the model’s
validity and improve robustness including
the availability of a public reference set of
drug-event causality assessments.

A

N/A

N/A

N/A

Transparency

There is a focus on transparency
throughout the paper. Information

about intended use of the model and

its design are provided. A decision tree
tool (CASCADE) designed to provide

clear rationale for the resulting causality
assessment was created and informs the
design of the resulting model. Data, results,
areas for further investigation, and how the
model could be applied in a PV system are
discussed.

N/A

N/A

N/A
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Principle Activities SPEC DEV PreD PstD RU

Data Privacy | The data used for the development, A A N/A |N/A | N/A
training, and validation of the model is
from the company’s internal post-marketing
safety database suggesting it was obtained
with the patient’'s/reporter’s consent and in
compliance with relevant privacy laws and
regulations.

Fairness & Based on the article, it is not possible to N/A IN/A IN/JA [N/A |N/A
Equity comment on whether model development
aligns with this guiding principle.

Governance | There is no discussion of governance N/A  IN/A IN/JA [ N/A [N/A
& and accountability activities, as defined in
Accountability | this guidance, in the paper. The authors
acknowledge the need for models to remain
compliant with regulatory frameworks

and guidelines. Further, the CASCADE
decision tree created is referenced as a
causality assessment support tool implying
accountability for the final causality
assessment decision remains with the drug
safety SME.
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Abbreviations

SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use

A: Applicable

NA: Not Applicable
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Use cases

Use Case F: Process efficiencies supporting signal
detection

Source Article:10
Area of PV: Signal Detection

F1. Business rational and challenges

One of the most time- and resource-demanding procedures for dismissing safety signals is
the identification of alternative causes for the reported adverse events (AEs) in ICSRs after
signals of disproportionate reporting have been identified. This includes the screening of co-
reported drugs to identify alternative potential causes for the newly identified drug—event pair.

F2. Solution

This study aimed to develop an Al-based framework to automate (1) the selection of control
groups in disproportionality analyses and (2) the identification of co-reported drugs serving
as alternative causes, to look to dismiss false-positive disproportionality signals.

The implementation of automatic selection of controls and dismissal of false positive signals
using a conditional inference tree is summarised in the flowchart below.

Figure 6: Flowchart summarising the implementation of the automatic
selection of controls and the dismissal of false positive signals
when using a conditional inference tree

Source: Al-Azzawi F et al, 2023 359 Reproduced under Creative Commons Attribution-Non Commercial 4.0
International License. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

Conditional inference tree-guided
Disproportionality analyses identification of alternative causes
in ICSR (i.e., coreported drugs)

Automatized selection of controls
for disproportionality analyses

Remove ICSR with alternative
cases (i.e., co-reported drugs) to
undergo case-by-case assessment

Disproportionality analyses
excluding cases with alternative
causes

List of disproportionality signals to
be processed for signal validation

A dual approach combining the ATC classification system code and the approved therapeutic
indication in the US Prescribing Information (USPI) of galcanezumab was used for automatising
the selection of controls for disproportionality analysis when using FAERS. All active ingredients
with the same therapeutic target (i.e. CGRP antagonists) as galcanezumab were identified
using the 4th [evel of the ATC code, or rather the chemical subgroup. DrugBank was used
to identify controls with the same approved therapeutic indication but with active ingredient
outside the chemical subgroup of galcanezumab, aiming to avoid masking due to drug class
effect and confounding by indication.
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Disproportionality signals were further analysed by using conditional inference trees to identify
alternative cause co-reported drugs. The USPI of disproportionally co-reported drugs was
screened to identify those drugs that listed in the USPI the AE in disproportionality signal
mimicking procedures performed during signal validation. The disproportionality analysis
was conducted again by removing cases with co-reported drugs for which the AE under
investigation was listed in the USPI as these cases had alternative causes for the AE.

F3. Results

By using conditional inference trees, the framework was able to dismiss 20.00% of erenumab,
14.29% of topiramate, and 13.33% of amitriptyline disproportionality signals on the basis of
purely alternative causes identified in cases, from within the control group. Furthermore, of the
disproportionality signals that could not be dismissed purely on the basis of the alternative
causes identified, the authors estimated a 15.32%, 25.39%, and 26.41% reduction in the
number of galcanezumab cases to undergo manual validation in comparison with erenumab,
topiramate, and amitriptyline, respectively.

The authors concluded that Al could significantly ease some of the most time-consuming
and labour-intensive steps of signal detection and validation. The Al-based approach showed
promising results; however, future work is needed to validate the framework.

F4. Challenges & Lessons Learned

The study highlighted specific challenges in automating signal detection within the FAERS
database using Al. One limitation was the lack of clear guidelines for control selection in
disproportionality analysis. This is in part due to disproportionality analyses being frequently
conducted against a background of the rest of the databases. Also, the choice of an
appropriate control can sometimes be nearly impossible in a given dataset and the subjectivity
associated with selection of controls. Nevertheless, this approach seems promising in some
circumstances, in particular when the automatic process proposed in this study for the
selection of controls within and outside the chemical subgroup of galcanezumab showed
an 86% success rate.

Another challenge emerged from the manual process needed to verify alternative causes
for adverse events through screening of co-reported drugs, as the Al framework did not
fully address this step. Although the conditional inference trees could identify statistically
significant differences in co-reported drug proportions, enhancing the dismissal of false-
positive signals, there remains a need for ad-hoc tools to automate Summary of Product
Characteristics (SmPC) checks.

In addition, the framework did not establish a clear cutoff for the number of drug classes to
identify viable controls, nor did it determine the optimal number of controls for disproportionality
analysis, highlighting a need for further research. Also, while the number of alerts changes
proportionally with the number of controls, developing systematic criteria to effectively
manage this multiplicity issue in practice remains challenging, necessitating further validation
across different drugs and databases.
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Use cases

F5. Compliance with the governance framework

Table 17: Use case F: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle

Risk-based
approach

Activities

This study adopted a systematic approach
to identify and mitigate the impact of false
positives in signal detection processes.
When developing tools to support signal
detection, developers should consider the
overall impact the tool may have to the PV
system within a QMS and consider the need
for mitigations that may be required to
support broader deployment.

SPEC

A

DEV PreD PstD

A

N/A

N/A

RU
N/A

Human
oversight

In the study, medical experts played a
crucial role in manually validating Al-
generated outputs to ensure accurate
signal detection. The article emphasised
the need for human review due to the
complexity and variability in each case,
underscoring the importance of involving
domain experts in interpreting Al findings.
The oversight involved identifying
alternative causes for adverse events
that Al might flag, ensuring alignment
between algorithmic predictions and clinical
knowledge.

N/A

N/A

N/A

Validity &
Robustness

The article noted the need for validation
and testing using FAERS data and
simulations. Implementing controlled tests
and optimising control selection addressed
stability and prediction reliability across
diverse drugs and spontaneous reporting
databases.

A

N/A

N/A

N/A

Transparency

Transparency was considered through
documentation of the methodologies
employed and the rationale for control
selection, addressing variability impacts.

N/A

N/A

N/A

Data Privacy

The method uses publicly available
information on labelling alongside FAERs
data which required limited consideration
for data privacy.

N/A

N/A

N/A

N/A

N/A
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Principle Activities SPEC DEV PreD PstD RU

Fairness & The study emphasised the necessity of A A N/A IN/A |N/A
Equity ensuring comparability and inclusivity

in control selections to prevent bias.

It underscored assessing data variability
and comparability among drugs to ensure
fair representation, addressing inequities
possibly introduced by inadequate data
collection or control dynamics. This was
important for balancing comparability
complexity and broader drug class
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inclusion.
Governance | During the PoC, the accountability of the A A N/A IN/A | N/A
& methodology remains with the developer.

Accountability | However, if the methodology is integrated
into a production setting, accountability
would transition to the human subject
matter expert. Governance within a PoC
ensures that scientific integrity principles
are adhered to, while future product use
governance should cover how the tool fits
into the overall PV system and quality QMS.

Abbreviations

SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use

A: Applicable

NA: Not Applicable
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Use Case G: Generative Artificial Intelligence:
synthesis and summary from a large unstructured
safety document repository for facilitating
pharmacovigilance evaluations

Source: Internal to CIOMS Working Group XIV member organisation

Area of PV: PV document retrieval

Note: This use case outlines the implementation of a GenAl solution by one CIOMS Working Group XIV member
organisation to enhance its PV-related work processes. It is important to note that many MAHs and Regulatory
Authorities (e.g. US FDA's ELSA) globally are exploring GenAl technologies for potential work enhancement.

This use case reflects an approach that was developed and implemented prior to the release
of this CIOMS guidance. As a result, the practices described within this use case may not
fully align with the best practices or recommendations.

G1. Business rational and challenges

The curation of data to support PV evaluations — from safety analyses and signal assessments
to aggregate reports and regulatory authority safety requests —is time- and labour-intensive,
often requiring search, retrieval, review, and summarisation of vast amounts of unstructured
safety data, from text-heavy clinical study reports and dossiers submitted to health authorities
to extensive legacy safety analyses, and to signal assessments and scientific literature. LLMs,
such as the GPT models can facilitate this effort for PV professionals with the capability to
summarise and synthesise unstructured safety data from broad and/or varied repositories.

G2. Solution

With hundreds of thousands of documents rich in safety-related data, LLMs were employed
to optimise the search, retrieval, review and summarisation of unstructured safety data in a
manner specific to the parameters and requirements of a human PV professional.

A Custom Al Search engine tool was developed using C# & .Net Framework and leverages
Microsoft's semantic kernel SDK and RAG pattern to allow PV professionals to interact with
unstructured safety data within private vector stores using a large language model with custom
systems instructions. PV professionals submit safety data-related queries via a web front end
which are routed to a private deployment of LLM along with context (data retrieved in-line from
the vector store) and system instructions. Azure OpenAl provides rREpresentational State
Transfer (REST) application programming interface (API) access to a powerful and diverse
set of models (OpenAl Chat, OpenAl text embedding, GPT- 4.1 Series) and integrates these
models with a large and diverse repository of unstructured safety data.

With access to the “text-in, text out” interface of the OpenAl model, PV professionals can
provide an input prompt and the model generates text with usage of OpenAl and GPT-4.1
Series models which facilitate interactive conversation with text-based inputs and responses;
this also leverages Open Als embedding models which converts text into dense vector
representations for NLP tasks.

By automating the process of retrieving relevant information, PV professionals can redirect
their time towards value-added endeavours rather than manual data sifting. The figure below
outlines Azure LLM architecture and interface with data assets.



Figure 7: An outline of our initial artificial intelligence architecture

Source: Internal to CIOMS Working Group member organisation. Figure reproduced with permission.
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Development and deployment of a meticulously crafted vector index of relevant company
file structures allows the organisation to leverage an LLM to easily and efficiently navigate
documents, files and data available within those company files. By transitioning to newer
models as they release, the organisation has observed improved accuracy and utility in
responses, validated through a manual verification of processes.

Regular feedback sessions are conducted to refine the Al tool's performance and uncover
additional use cases. This iterative approach ensures continual improvement and minimises
errors. Guidelines were also developed for framing questions to the model effectively, further
enhancing the tool’s usability.

G3. Results

The GenAl tool in this use case has demonstrated potential as an Al ‘research assistant’
enabling PV workers to quickly and efficiently search hundreds and thousands of safety
documents to provide structured and intelligent outputs.

For the current status of this project, the PV users are training to better understand and apply
GenAl tool capabilities, particularly for summarising and retrieving safety data. Although no
formal metrics were collected, QC was performed by the users and shared with the GenAl
developers in the project team. The use of the GenAl tool by multiple PV users has been
instrumental in evaluating the tool's accuracy and performance. The manual verification
process allowed the users to assess that the tool provides relevant search results, retrieves
the correct information, and summarises the source materials accurately. Based on the
feedback, the GenAl tool is being refined to deliver efficient and faster responses and include
downloadable files of the safety data references. Enhancements include the integration of
clearer instructions and contextual prompts to support more precise and relevant answers.
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Looking ahead, there are plans to expand this application of GenAl, focusing on areas such
as extraction and summarisation of safety literature for signal detection purposes and
outputs for case reporting. In addition, there may be potential to use GenAl applications to
extract and create summary information for aggregate safety reports, support audits and
inspections or support tasks related to benefit-risk assessment. For example, to the question
on “EMA expedited reporting”, the GenAl tool was able to review and locate the appropriate
documents from the very the large document repository and instantaneously provide extracted
outputs in the form of tabular summaries of the expedited reporting requirements along
with references of the source documents to support PV with case processing and safety
database configuration.

Ultimately, leveraging Al-driven document retrieval and summarisation from large document
repositories may help PV professionals in performing critical medical and scientific evaluations
of safety information more efficiently, thereby enhancing product safety and efficacy.

G4. Challenges and Lessons Learned

The main challenges of OpenAl were high and unpredictable cost, a gap in required Al
expertise, concerns relating to data privacy and security. Once these challenges were
identified the company quickly developed methodologies to monitor and control API costs,
optimising prompt design, deployed indexing, and established data security and privacy
protocols to protect potentially sensitive information.

For implementation of GenAl projects cost control / cost capping at project onset to control
project budget is highly recommended. Availability of Al experts / vendor at the early stages of
the project would facilitate project development, while creating an indexing system improves
efficiency of users in asking the targeted questions.

As part of further development of the program, itis envisaged that user quality assessments
would be systematically collected and evaluated with feedback sessions that, over time,
will build up a knowledge / experience base for developers to continually improve and
enhance the GenAl tool.

G5. Compliance with the governance framework

During the development and pre-deployment phases, the GenAl project was carefully developed
and managed with a limited scope, ensuring alignment with the applicable guiding principles
as indicated in Table 18.

As the project transitions into production and its use and scope expand, careful consideration
will be given to maintaining close alignment with these principles.

Therefore, compliance is indicated as closely aligned, laying a foundation of trust in the
solution’s ability to perform vigilance tasks with adaptive and growth capabilities. This is
explained in more detail in Table 18.



Table 18: Use case G: Alignment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle

Risk-based
approach

Activities

GenAl use is a closed environment used
for training and testing during development
and pre-development. However, there is
communication of potential inaccuracies
and pitfalls during these phases. Currently
there is no anticipated (patient risk) for
post-deployment or routine use. As GenAl
achieves more general and expanded

use, risks will be regularly reassessed.
Therefore, all phases are considered
partially aligned with this guiding principle.
As described above specific data privacy
and security protocols were developed.

SPEC
A

DEV PreD PstD RU

A

A

N/A

N/A

Human
oversight

Fully aligned in development phase,
as there is human oversight from the user.

Moving into production use, consideration
will need to be given to the level of human
oversight required to mitigate against
known risks of GenAl e.g. hallucinations and
automation bias. In addition to individual
accountability of the output.

N/A

N/A

Validity &
Robustness

Validation and testing were conducted
based on the appropriateness of the
results.

Once in post deployment and routine use,
the data sets are very large; however,
expansion of use cases will follow a

similar trajectory of human testing.

Any inaccuracies in information retrieval will
serve as valuable feedback for the GenAl
developers to further refine and update the
tool.

Whilst no formal metrics were collected,
quality control from the perspective of the
users to collectively review and assess the
results and GenAl outputs is expected.

N/A

N/A

Transparency

As the GenAl solution expands its scope
and complexity during post-deployment

and routine use, further realignment

is anticipated to support post hoc
transparency to the end user of the system.

Transparency in relation to the public is not
applicable as this is a closed system.

N/A

N/A
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Principle

Data Privacy

Activities

Fully in alignment during all phases. All data
remains internal within the company. Also,
role-based access and restrictions are
applied. For example, individuals from the
organisation’s safety department would not
have access to unblinded clinical trial safety
data in the document repository, i.e. search
outputs would remain blinded.

SPEC
A

DEV PreD PstD

A

A

N/A

RU
N/A

Fairness &
Equity

Inherent limitations and biases exist within
safety data which may manifest themselves
within GenAl based outputs.

PV professionals are aware of the
limitations of safety data to limit the impact
of bias.

A

N/A

N/A

Governance
&
Accountability

Accountability from system usage and
implementation during development and
pre-deployment, e.g. if system is clearly
not useful, then it will be discontinued /
upgraded.

Ultimately, regulatory accountability resides
with subject matter expert / user as

they are responsible to review and verify
content. Therefore, partial alignment is
anticipated from post-deployment onwards.

N/A

N/A

Abbreviations

SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care

RU: Routine Use
A: Applicable
NA: Not Applicable
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Use Case H: Artificial intelligence to support
diagnosis and prediction of (hydroxy)chloroquine
retinopathy

Source:11,12,13,14,15
Area of PV: PV in The Clinic

H1. Business rational and challenges

PV in the clinic is concerned with the prevention and treatment of adverse drug reactions in
individuals. Prevention may be primary, which can be achieved through identifying potential
complex or non-obvious combinations of patient characteristics that are predictive of
adverse drug reactions to guide optimum medication selection (i.e. precision medicine).
It also encompasses secondary and tertiary prevention (i.e. early diagnosis of adverse
drug reactions and ensuing interventions) to mitigate the impacts of ADRs. Examples follow.

Chloroquine and hydroxychloroquine are important drugs in rheumatology. Although relatively
well tolerated compared to some other therapeutic options, retinal toxicity is a risk which
can result in serious visual impairment if not detected early so that the drug may be
discontinued in a timely manner. Even so, by the time of retinopathy diagnosis, there may
be irreversible retinal damage. Conversely, if predictive Al can provide sufficient leading
indicators of progression, therapy duration and attendant therapeutic benefits might be
maximised. Historically, the gold standard for screening and detection has been fundus
photography and automated perimetry. More recently, multifocal electroretinography (mfERG)
and Optical Coherence Tomography (OCT) have been added to the diagnostic armamentarium.
Each of these are routinely assessed by human readers, ideally retinal specialists, but subtle
changes, including temporal patterns, can be missed, and not all locales have the necessary
instrumentation or available retinal specialists. It would be ideal to augment human visual
assessors to identify early functional changes indicative of retinopathy prior to onset of
irreversibility or better predict progression. Al has shown potential in detecting or predicting
various ocular diseases based on retinal images/fundus photography, such as age-related
macular degeneration (AMD) and diabetic retinopathy (DR). More Al has been retrospectively
developed and tested to diagnose or predict (hydroxy) chloroquine retinopathy.

H2. Solution

Al has been applied to colour fundus photographs, OCT and multifocal electroretinographic
tracings for diagnosing hydroxychloroquine retinopathy. Fan et al studied hyperspectral
imaging (HIS) of 176 fundus photographs from retinopathy positive (25) versus retinopathy
negative (66) patients at a referral clinic using four deep learning models for the detection of
retinopathy. Kulyabin et al compared deep learning-based classification of raw mfERGs versus
models based on conventional readout parameters of the mfERG for classification, and for
prediction (regression) of visual field sensitivities from 53 predominantly female patients
(35 retinopathy negative, nine minimal retinopathy, and nine manifest retinopathy) monitored
with mfERGs and perimetry for a period of 0.7-20.9 years. Kalra et al used random forests
for automated diagnosis and prediction of disease progression using clinical features and
features based on spectral domain OCT (SD-OCT) obtained from 388 eyes / 368 patients,
a majority being female. Habib et al trained support vector machines (SVYM) on mfERGs to
identify hydroxychloroquine retinopathy in 1463 eligible eyes (748 predominantly female
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Use cases

patients), of which 95 eyes (48 patients) were eligible for inclusion as controls. Very recently,
Woodward-court et al reported the development and application of a convolutional neural
network (CNN) to detect the presence and predict future development of hydroxychloroquine
retinopathy from SD-OCT by calculating a Likelihood of Retinopathy Score (LRS). The study
is notable for a larger and more diverse dataset involving 409 patients (171 positive for
hydroxychloroquine retinopathy and 238 negative) and 8251 SD-OCT b-scans (1988 volumes)
from five independent international clinical locations representing relatively diverse self-
reported racial or ethnic groups, as well as two different SD-OCT technologies.

H3. Results

The best performing deep learning models in the study of Fan et al achieved accuracy,
precision, recall, specificity, and Fl-scores of >0.95., with superior performance using
hyperspectral images versus the original retinal images. Habib et al's SVM returned a
specificity of 84.0% with sensitivity of 90.9%. Performance could be calibrated to place a
premium on sensitivity for screening or specificity for diagnosis. Kalra reported a mean AUC
of 0.97, a sensitivity 95% and specificity of 91% for detection, and mean AUC=0,89, recall
of 90% ad specificity of 80% for progression prediction. Kulyabin reported that Al-based
models using full mfERG traces had a balanced accuracy of up to 0.795, precision of up
to 0.844, recall of up to 0.866, and Fl-score of up to 0.771. Woodland-Court reported
that their CNN-based algorithm was able to detect hydroxychloroquine retinopathy at the
time of clinical diagnosis, and with a substantial lead-time before clinical diagnosis (mean:
220.8 days before clinical diagnosis; accuracy: 0.987 [95% Cl: 0.962—1.00]; sensitivity:
1.00 [95% CI: 0.833—1.00]; specificity: 0.983 [95% Cl: 0.952—1.00]; PPV: 0.944 [95%
Cl: 0.836—1.001; negative predictive value: 1.00 [95% Cl: 0.937—1.00]). For eyes that
developed retinopathy, the average lead time relative to clinical diagnosis was 2.74 years.
The algorithm also demonstrated face validity based on the high coefficient of determination
(0.93) for LRS between left and right eyes and the temporal evolution of LRS consistent with
the known clinical trajectory of this retinopathy.

H4. Compliance with the governance framework

In considering the alignment of the reviewed studies with the governance framework, we note
several points up front. The studies were retrospective and feasibility/pilot studies, without
reported advancement to routine use in the clinic.

Challenges and Lessons Learned.

Although the most recent cited study by Woodward-Court was an advancement relative to
previous studies in several respects, the study populations were more/less small and limited
or imbalanced in various respects according to the study. Because the clinical scenarios for
drug use often involve autoimmune disorders, the subjects were predominantly female. Asians
were under-represented in study samples and there was a need for further assessment in
larger and more diverse populations. Nonetheless, the most recent study by Woordward-Court
was larger and more diverse than previous studies, and also included and an assessment
using two different SD-OCT instruments. Over the multiple geographically distinct data
sets, instrumental variability normally presents a potential generalisability challenge that
is not always accommodated. As is often the case in Al diagnostic applications involving
retinal pathology, retinal comorbidities were excluded, or under-represented, which limits
generalisability to more diverse patient populations that have multiple retinal comorbidities
(e.g. diabetic retinopathy and drug-induced retinopathy). The use of eyes as the unit of



observation raises the question of pseudo-replication and its potential impacts of performance
estimates, though confidence intervals were not typically presented.

Importantly, the most contemporary of the cited studies strongly emphasised their solution
within the context of the challenges and corresponding desirable features of diagnosis
from health-care systems perspective, namely, limiting the patient and the health care
system burden using a single, widely available, automatable diagnostic solution that could
“democratise” diagnosis to clinicians of various specialisation levels.

The rarity of the disease would require large patient cohorts for such a clinical study,
a significant hurdle to prospective validation. Validation of the prediction of future clinical
retinopathy requires very lengthy patient surveillance. Prospective deployment in the clinic
remains challenging due to the time and financial resources required for seeking regulatory
approval for software as a medical device in many areas. Further work may include a financial
assessment of deployment of the algorithm in the ophthalmology clinic to support decisions
on future development.

Table 19: Use case H: Alighment with the governance framework (detail)
Source: CIOMS Working Group XIV

Principle Activities SPEC DEV PreD PstD RU
Risk-based Not aligned. Risk assessment and risk N/A IN/A IN/JA IN/A [N/A
approach mitigation plans not provided in these pilot

studies. Placement within a human-in-the-
loop framework was explicitly considered in
one or more studies.

Human Partial alignment. One or more of the A A N/A IN/A |N/A
oversight publications, which report feasibility/pilot
studies in clinical settings, discuss the
proper deployment with respect to human
oversight, such as HITL. However, change
management and staff training plans are
not discussed. Discussed is the fact that
the available human oversight in some
locations may be provided by generalists
with less experience and expertise

than retinal specialists, affording more
opportunity for incremental benefits in
underserved settings.
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Principle

Validity &
Robustness

Activities

Partial alignment. Reference standards
defined. One or more studies note the
limitation of the imbalanced data sets used
that impair generalisability. Also, in one/
more studies patients with other ocular
pathology excluded so the two classes
were HCQ retinopathy present versus
normal retina, which limits generalisability
to screening in patients with other
coexistent ocular disorders that may affect
the retina. Source population (deployment
domain) not clearly defined in all studies.
No discussion of integrating data pre-
processing (e.g. cropping retinal images)
into routine use). In some studies unit of
observation was “eyes” raising questions
about pseudo-replication.

SPEC

A

DEV PreD PstD

A

A

N/A

RU
N/A

Transparency

One/more papers report adherence to
tenets of the Declaration of Helsinki

and obtained Institutional Review Board
approval. One or more papers described
explanations of results such as heatmaps of
feature distributions.

N/A

N/A

Data Privacy

One or more of the referenced studies
declared adherence to tenets of the
Declaration of Helsinki and obtained
Institutional Review Board Approval.

N/A

N/A

Fairness &
Equity

One/more of the referenced studies report
adherence to tenets of the Declaration of
Helsinki and obtaining Institutional Review
Board approval. One or more of papers
acknowledge that data under-represents
specific groups of persons such as
Asians, who may display different findings
and recommends further assessment

with larger data sets with more diverse
representations. Further discussion involved
scenarios in which retinal specialists may
not be available, such as under-resourced
or under-represented locales, as also
discussed in human oversight above.

A

N/A

N/A

Governance
&
Accountability

These studies which occurred in clinical
settings were conducted according to the
guidelines of the Declaration of Helsinki
and approved by the respective Institutional
Review Board.

A

N/A

N/A

NA

N/A
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Abbreviations

SPEC: Collection of specifications, requirements
DEV: Development and change management
PreD: Pre-deployment & post-change sign-off
PstD: Post-deployment & post-change hyper-care
RU: Routine Use

A: Applicable

NA: Not Applicable
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APPENDIX 4.
CONTENT RELATED TO EXPLAINABILITY
AND TO FAIRNESS & EQUITY

lllustrative examples related to Explainability

As stated in Chapter 6 on Transparency, it is essential to disclose why, when and how Al
is being used in different PV tasks. This is to maintain trust, awareness, and responsibility
among stakeholders, including developers, PV professionals and decision makers, regulatory
authorities, HCPs, and patients. However, the requirements for explainability, and the
manner in which it is employed, differ according to the context, for example, who is seeking
the explanation, for what purpose, the nature of the task, and the stage of the system'’s
lifecycle.! In the following sections, illustrative examples are presented to demonstrate the
range of scenarios. The associated benefits of explainability as highlighted in the examples
are summarised and subsequently synthesised at the end of this section.

Examples of explainability in artificial intelligence-supported
pharmacovigilance tasks

Consider a setting in which a PV officer is reviewing a case selected by an Al system as of
interest, yet the rationale for this classification is not immediately apparent. In such situations,
the reviewer may benefit from access to information indicating which text in the case data
contributed to the Al's recommendation. An actual example of this is described below.

The Information Visualization Platform (InfoViP), developed for the US FDA's Center for Drug
Evaluation and Research (CDER) is an example of how explainability may benefit the human
experts engaged in signal detection and assessment supported by an Al system.2 InfoViP
uses NLP and several other components to process post-marketing data from multiple
sources (FAERS, product labels, and biomedical literature) and provides a visualisation of
the information, i.e. explanations, to support medical reviewers who detect and evaluate
potential signals from the millions of adverse event reports submitted to the US FDA's FAERS
database. The NLP component, the Event-based Text-mining of Health Electronic Records
(ETHER), coupled with modern frontend techniques, provide visual information by colour-coded
highlighting of relevant text in the case narrative to help reviewers focus on signal-related
information. An informed model further identifies cases containing enough information to
assist reviewers assessing the report quality, and provides concrete explanations of these
selections. All these functionalities, combined with case deduplication and several filtering
options, facilitate speedy review by the medical reviewers, an otherwise humanly impossible
task across millions of reports.3
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Figure 8: US FDA's Information Visualization Platform user interface
illustrates the system capabilities, focusing on the features that
positively contribute to classification for accessibility

Source: Botsis T et al, 20243
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Gheck/ Unchackal
st +Detalled narrtive ]
Search Tags +Many concomitants listed
None 3y | +21 uncoded PTs were found in the narative OT FEMALE  USA 2023 US-APOT...  Drug ineffective
+Age structured field is present (does not consider narrative-derived age)
Probable ™ ~The calculated time to onset s greater than 30 days
Arematie Etology © " @ U B ¢ A 111682351 21-JAN-2024  DE, HO,OT FEMALE USA US-PFIZ D ffecti
S8 2 AN ! rug ineffective
Doesn't Meet Case ... (0) “ T 9

Show 4 more

" O 0D B @ A 112042751 28-JAN-2024  DE, HO FEMALE UsA US-NOVA...  Drug ineffective

Has Notes

B ¢ A 111248301 05-JAN-2024 DS, LT MALE UsA 01-JUN-2020  FDA-CDE... Electric shock sensation...

Apply Filters

The example above illustrates a core benefit of explainability described by Albahri et al
(2023).4 Explainability can facilitate human experts in making “sound and reliable” decisions.
Ultimately, when the human decision and the accompanying explanation are retained,
this information would nurture trust of the system owner and QA staff who are tasked with
ensuring compliance, as well as the trust of regulators who may wish to inspect why certain
cases are selected or rejected as signals.

Also, it is conceivable that explanations could lead a user to notice a bias or spurious
correlation that is leading to incorrect predictions. Reporting this back to the development
team can contribute towards future improvement. In this way, explainability is useful for
ongoing vigilance against bias risk and performance issues that may appear post-deployment
and for continually ensuring the trustworthiness of the decisions made. As a result, post hoc
explainability has resulted in increased trust and the perception of fairness in Al-supported
decision making.4

Examples of pharmacovigilance stakeholders benefitting from explainability

While the likelihood of an individual from the general public requiring explainability in a PV
setting may be small, the possibility cannot be excluded entirely as the use of Al becomes
more commonplace. Some conceivable scenarios are described below:

— If a reporter (HCP or patient) reports a serious AE and the report is processed as a
non-serious case by an Al triage system, the reporter may request an explanation
from the MAH. Traditionally, the reporter could receive an explanation from the PV
officer who has made the final triage decision. However, when this takes place in an
automated Al triage process, a lack of explainability may impact trust and acceptance
of the result by the reporter.

ARTIFICIAL INTELLIGENCE IN PHARMACOVIGILANCE



If GenAl would be used in assisting a pharmacist in medication therapy management
to prevent drug interactions, both the pharmacist and the patient are directly exposed
to the Al's recommendations.® Here, questions concerning the Al recommendations
could be raised by both parties.

Examples of explainability in system development

A data scientist or ML engineer who is training the Al system benefits from explainability when
it reveals which features are used by the Al to reach a specific prediction or when it reveals
a bias in the training data. Especially in complex systems which lack inherent explainability,
supporting tools could provide explanations that facilitate troubleshooting by revealing what
to change or exclude in order to “flip” the outcome.é However, in most cases, tweaking the
system architecture of a deep neural network or specific features based on such insights can
be quite challenging. These explainability methods are more likely to identify hidden biases
in the training data which can be corrected as illustrated in the example below.

Ribeiro et al (2016)7 demonstrates how Local Interpretable Model-Agnostic Explanations
(LIME) could be leveraged to support explainability and reveal the likely cause of incorrect
predictions. In this experiment, the model that was trained to distinguish images of dogs and
wolves was first intentionally trained to associate wolves with snowscapes. In other words,
the training data was deliberately biased by excluding images of wolves in other seasons.
This resulted in predictions that included a wolf against a green background identified as
a dog and a husky in a snowscape identified as a wolf. LIME was used to show subjects
which areas of the image were used as features by the Al in its predictions to see if the
subjects could identify the cause of the misidentification. The subjects successfully identified
background snow as the potential feature that led the Al to make the incorrect predictions.
Thus, demonstrating how post-hoc explainability methods can be used to explain a prediction
made by an inscrutable deep neural network and uncover the underlying issue in the training
data and the resulting spurious correlation that led to the incorrect output.

In the context of PV, similar techniques could be used to highlight words in the text which
are picked up by the Al as relevant features. In a real-life but unpublished example in which
an Al triage system was misidentifying some serious cases, PV SMEs benefited from seeing
which terms in the case were considered by the Al in its seriousness predictions. In this case,
a LIME analysis revealed a focus on the drug name. Combined with the fact that the missed
serious cases concerned Over the Counter (OTC) drugs, the PV SMEs discovered that the
Al was basing decisions on the drug name and had learned spurious assumption that OTC
drugs are not likely to cause serious events. Using the insight gained from explainability,
the developers could reject the model in favour of another one, examine the training data
for bias such as the lack of serious cases associated with OTC drugs or when there is no
bias, and solve the issue through feature engineering by instructing the Al not to consider
the drug name in its decisions.

Explainability, therefore, can help developers make informed decisions when assessing Al
models by uncovering hidden biases as well as features and spurious correlations that are
resulting in incorrect predictions. Explainability may also reveal the underlying factors that
result in performance differences between models that are trained on the same training
data and aid the developer in model selection. In turn, transparent documentation of this
process will go a long way towards nurturing trust in the system, not only for the developers
but also for the system owners, users, and the regulators.
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Examples of artificial intelligence-systems interacting with health care
professionals and patients

A hypothetical example can be the case of a HCP who is requesting product-specific information
via a chatbot provided by a MAH. Such a chatbot could have multiple objectives ranging
from the provision of drug product information to the collection of AE and quality defect
reports. When the HCP notices that the chatbot response is inadequate, i.e. not considering
key medical terms or AEs, or providing questionable information, the HCP may contact the
MAH for an explanation.

Whilst the scenario above is a fictive example, one example of a chatbot that is currently
available is the Smart Artificial Intelligence Resource Assistant for Health (SARAH) on the
WHO website. This is a prototype chatbot that is intended to provide tips on health topics and
not medical advice as clearly stated on the landing page of SARAH.8 On one hand, SARAH
exemplifies how such an application could be of service to the public as it is available 24/7
and in eight languages. On the other hand, incidents of the chatbot providing inaccurate
or incorrect information or being unable to answer some queries have unfortunately been
reported in the media and taken up in the OECD Al incidents monitoring database.® This
illustrates how, when a chatbot is deployed, the interacting patient or healthcare provider
or the media may challenge the information that is provided. It is therefore conceivable that
in PV, when a MAH deploys an Al solution that interacts directly with the public, a lack of
explainability may be an important consideration.

Finally, any system that interacts directly with the public in a medical setting warrants extra
attention in that a HCP is likely to notice medically incorrect information, but most consumers
and patients may not be able to do this. Individuals without a medical background will be at
risk of accepting and acting on medically incorrect information. To illustrate this point, in a
study of trust and medical advice provided by ChatGPT, persons without a medical background
have been found to trust the chatbots for lower-risk health topics.10 Without the medical
background, a layperson is at increased risk of harm by not being able to recognise incorrect
information. In a recent systematic review and meta-analysis of 83 studies comparing GenAl
models to physicians in diagnostic tasks, Al models achieved an overall diagnostic accuracy
of about 52% (95% Cl: 47.0-57.1 %) and performed comparably to non-expert physicians,
but significantly worse than expert physicians.11

Thus, aside from an inability to provide an explanation to an individual from the public who
is challenging the Al output, system owners must thoroughly consider and mitigate the risks
of an Al solution that interfaces with the general public. This also touches on the subject of
accountability since it is not the chatbot that is held accountable for any harm that befalls
the individual.

Examples where explainability is not available and not required

To illustrate a situation in which explainability is not necessary nor possible, consider first
how the use of publicly available machine translation tools is now commonplace and how the
public generally does not require detailed explanations into how the Al system translated a
specific piece of text. Consider also how translations in a GxP-regulated environment require a
quality check regardless of whether the translation was carried out by a human or a machine.
Furthermore, the quality check is normally carried out by an individual who is proficient in both
the source and destination languages. In some such circumstances, not only will the human



responsible for the quality check be able to spot errors, but also understand the underlying
reasons for machine translation errors. An example of a translation issue with a self-evident
root cause is the case of biased gender assignment that occurs when translating a genderless
language such as Finnish to English.12 The bilingual human reviewing the translations would
easily notice the gender bias, understand why this has been introduced by the Al and can
correct this accordingly. In this setting, consideration may also need to be given to the risk
of automation bias, where repeated exposure to seemingly correct outputs can cause the
reviewer to become less vigilant and overly reliant on the machine translation. See also
chapters on Risk-based approach, Human oversight, Data Privacy, and Fairness & Equity.

In PV, another example of Al use, which may not require explainability would be the automatic
de-identification of case narratives presented by Meldau et al 2024.13 In this case, a system
using an LLM was trained to automatically detect likely person names and initials in case
narratives for the purpose of redaction. While a HITL will not be able to know why a specific
piece of text was highlighted as a likely person name by the LLM, this is not required for
them to decide whether it should be redacted. More important is that the Al system has good
enough performance, especially with respect to false negatives (missed names or initials),
that human operators can rely on its output. At the same time, the lack of explainability
of this method did present a challenge in assessing fairness and equity, when the only full
name in the test set that was not redacted by the method was found to be of Indian origin,
as discussed in the above-cited paper.

Example of how explainability may improve human processes and decision making

A final example illustrates how inherently explainable Al models may help improve human
processes and decision making. In the evaluation of a statistical method for duplicate
detection in AE reports,14 a pair of Norwegian reports were identified as suspected
duplicates, and ranked above all other pairs in the data set by the Al model. However, these
two reports were not labelled as known duplicates and did not look like obvious duplicates
to the human assessors: onset dates and ages that were close but not matching, and there
were no exact matches on AE terms (although they were clinically similar). Inspection of
the Al model’s output revealed that its classification of this pair as likely duplicates by the
Al model was driven by an exact match on six identical drug substances, which were not
commonly co-reported. The cases were subsequently confirmed by the national regulator to
be previously unknown duplicates that concerned the same incident but had been reported
by two different physicians in the same hospital, thus accounting for the differences.14 In
this example (and in general), human assessors did not fully appreciate how unlikely it was
for two independent reports to match on six distinct drug substances and therefore failed to
lend this piece of evidence the appropriate weight in their assessment. Insights like this could
be used to improve evaluation of suspected duplicates by human operators going forward.

Examples of methods supporting explainability

Some methods for post-hoc explainability in use at the time of writing this report include:

LIME - see the example of Ribeiro et al (2016)7 described earlier in this chapter;
Shapley Additive exPlanations (SHAP).

An example of SHAP explainability in a supervised ML model used to support signal validation
is presented by Imran et al (2024).15
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Trust scores that indicate the model’s uncertainty for the output.lé

Confidence scores are a metric that is usually available and can be used to flag output
that is uncertain for human review.1

Visualisation through highlighting of text that was considered by the Al in its prediction
and saliency maps using a heat map overlay to indicate areas of the input image that
are relevant for the model’s prediction.

Although assessing and processing images is not a mainstream activity in PV, saliency
maps are mentioned as another example to complete the view of the current landscape.
See examples in Plass et al (2023).16

In the case of PV where the data is predominantly text based, visual explanations are likely
to take the form of highlighting relevant text within the case data. See also the US FDA
InfoViP described above as an example of explainability benefits.2.3

Content related to Fairness and Equity

While not all of the examples provided below are specific to PV, they illustrate the potential
impact of inadequate data, bias from underrepresented populations and explicit bias potentially
leading to unfair treatment of specific populations, underserved populations, and potential
treatment inequality.

Example of inadequate training of Al solutions and/or inadequate data sets that
introduced unfair bias and resulted in inequity.

In the US, prescription opioids are tracked through electronic databases, Prescription Drug
Monitoring Programs (PDMPs). While not a PV specific example, Bamboo Healths NarxCare®
is an example of an Al-powered tool that leverages PDMPs to calculate an opioid risk metric
to predict the likelihood of a potential overdose. Although the tool is intended to support
medical decisions, there have been observations that patients who are high health care
utilisers with complex medical conditions may be discriminated against and underserved for
pain management because of a “high risk score”.17 The score is calculated based on limited
data available in the PDMP and does not consider any other factors when calculating the risk
score. One factor that influences the score is the number of prescribers. Patients treated
at teaching hospitals with multiple healthcare prescribers may have “too many prescribing
physicians” and they may be interpreted as seeking treatment from multiple physicians to
obtain multiple prescriptions. An April 2021 study in Drug and Alcohol dependence found
that “common data driven algorithms” misclassified 20% of patients with cancer who often
see multiple specialists as patients seeking multiple physicians in an effort to obtain multiple
opioid prescriptions. As noted by the authors, the PDMP data lacks diagnostic information
and other critical patient context limiting ability to distinguish misuse from appropriate
clinical use. An October 2021 study published in Drug and Alcohol Dependence conducted
an independent validation study and found that the NarxCare tool had a 17.2% false positive
and 13.4% false negative.18

In this example, bias was introduced into the NarxCare tool because of inadequate data
that did not account for subgroup factors (e.g. patients with complex medical conditions,
healthcare models that result in multiple prescribers, lack of context for patients who require
prolonged opioid use, lack of diagnostic information) potentially resulting in inappropriate



and misleading high patient opioid risk score predictions. The threat to fairness and equity
for patients within subgroups who have a high score assigned because of bias, is that they
may not receive adequate pain management when the high score is considered in isolation.

Within PV, the risk to fairness and equity are primarily from explicit biases that may result
in negative impact or may result in discriminatory harm to subpopulations underserved by
an Al solution. The NarxCare example, while not PV related, demonstrates both explicit
bias from inadequate data, lack of context and implicit bias because negative stereotypes
associated with “high health care utilisers” were applied.17

Example of bias applied because of under-represented populations

In Brazil, the assertiveness outcomes of the skin’s lesions classification using artificial neural
network in Caucasian patients and Brazilian patients were compared. The skin lesions were
classified using basic architecture of CNN. The International Skin Imaging Collaboration
(ISIC) database was used to train the neural network. Approximately 25 thousand images of
skin lesions from the ISIC database were applied to the CNN. These images have included
melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign keratosis,
dermatofibroma, vascular lesion, and squamous cell carcinoma lesions. The tests performed
with ISIC patients had accuracy rates close to 90%. However, the accuracy rate for detecting
skin lesions was less than 40% when the tests were carried out with Brazilian patients as
compared to the higher accuracy of 90% with Caucasian patients. Thus, the potential for
inequity in proactive treatment of skin lesions in Brazilian patients would be higher as a result
of the low CNN accuracy detection rate.19

Example of Explicit negative bias

In Appendix 4, “Examples of explainability in system development” included an example
describing an Al triage system that incorrectly identified serious cases. The Al solution
incorrectly learned to predict any AEs associated with an OTC drug of interest as being non-
serious because serious events were under-represented in the training data. This can also
be considered an example of explicit negative bias. In addition to the inadequate training
data set, there was an explicit bias that it was not likely the OTC products in question would
have serious AEs associated with the use of the products. Since populations that may not
have the same means to seek treatment at a medical facility or access to a HCP may be
reliant on OTC products, and these groups have a high likelihood of being from minority
groups, a systematic misclassification of serious reports for OTC products as being non-
serious potentially impacting safety risk identification and assessment could be seen as a
threat to fairness and equity.

Appendix 4 — References

Royal Society. Explainable Al. Roy Soc [Internet]. 2024. (Website accessed 11 August 2024)

2 Spiker J, Kreimeyer K, Dang O, Boxwell D, Chan V, Cheng C, Gish P, Lardieri A, Wu E, De S, Naidoo J. Information
visualization platform for postmarket surveillance decision support. Drug Saf. 2020;Sep;43:905-915. https://
doi.org/10.1007/s40264-020-00945-0 (Journal abstract)

3 Botsis T, Dang O, Kreimeyer K, Spiker J, De S, Ball R. A Decision-Support Platform Powered by Al and
Humans-in-the-Loop Boosts Efficiency and Assures Quality in FDA's Pharmacovigilance. International Society of
Pharmacovigilance, 23rd Annual Meeting 2024, Montreal, Canada. (Webpage accessed 21 March 2025)

4 Albahri AS, Duhaim AM, Fadhel MA, Alnoor A, Bager NS, Alzubaidi L, Albahri OS, Alamoodi AH, Bai J, Salhi A,
Santamaria J. A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of

Q
o
=
—
@
=
—
=
@
[
—
@
=%
—
o
m
>
=
=
=]
o
=
o
=
=%
—
o
L
=
=
=
@
19
7
Ro
m
o)
=
=
<



https://royalsociety.org/news-resources/projects/explainable-ai/?utm_source=report&utm_medium=print&utm_campaign=ai-interpretability/
https://doi.org/10.1007/s40264-020-00945-0
https://doi.org/10.1007/s40264-020-00945-0
https://link.springer.com/article/10.1007/s40264-020-00945-0
https://isoponline.org/annual-meetings/isop-2024/

S
o
L
%]
(%]
(%]
5]
=
=
©
L
o
Bs)
o
c
o
a
©
=
<
o
B3
Ll
o
2
o
Q
D
<
)
—
b
=
0]
30
=
<)
(&)

10

11

12

13

14

15

16

17

18

19

quality, bias risk, and data fusion. Inf Fusion. 2023;Aug1;96:156-191. https://doi.org/10.1016/].inffus.2023.03.008
Journal full text

Roosan D, Padua P, Khan R, Khan H, Verzosa C, Wu Y. Effectiveness of ChatGPT in clinical pharmacy and the Role
of Artificial Intelligence in medication therapy management. J Am Pharm 2023;Dec 2;64(2);422-428. https://
doi.org/10.1016/j.japh.2023.11.023 (Journal full text)

Hauben M. Artificial intelligence in pharmacovigilance: Do we need explainability?. Pharmacoepidemiology and
Drug Safety. 2022;Dec;31(12):1311-1316. https://doi.org/10.1002/pds.5501 (Journal full text)

Ribeiro MT, Singh S, Guestrin C. “Why Should | Trust You?": Explaining the Predictions of Any Classifier [Internet].
arXiv:1602.04938 2016. https://doi.org/10.48550/arXiv.1602.04938 (Journal full text)

World Health Organization (WHO). Using Al to lead a healthier lifestyle. WHO [Internet]. 2024. (Website accessed
21 March 2025).

Organisation for Economic Co-operation and Development (OECD). OECD legal instruments. Recommendation
of the Council on Artificial Intelligence. OECD [Internet]. 2019. (Webpage accessed 21 March 2025)

Nov O, Singh N, Mann D. Putting ChatGPT’s medical advice to the (Turing) test: survey study. JMIR Medical
Education. 2023;Jul10;9:e46939. https://doi:10.2196/46939 (Journal full text)

Takita H, Kabata D, Walston SL, et al. A systematic review and meta-analysis of diagnostic performance comparison
between generative Al and physicians. npj Digit Med. 2025;8:175 https://doi.org/10.1038/s41746-025-01543-z
(Journal full text)

Savoldi B, Gaido M, Bentivogli L, Negri M, Turchi M. Gender bias in machine translation. Trans Assoc Comput
Linguist. 2021;Aug;18;9:845-874. https://doi.org/10.1162/tacl a 00401 (Journal full text)

Meldau EL, Bista S, Melgarejo-Gonzalez C, Niklas Norén G. WHO Uppsala Monitoring Centre. Automated De-
identification of Case Narratives Using Deep Neural Networks for UK Yellow Card [Internet]. (Full text accessed
21 March 2025)

Norén GN, Orre R, Bate A, Edwards IR. Duplicate detection in adverse drug reaction surveillance. Data Min Knowl
Discov. 2007;14:305-328. https://doi.org/10.1007/s10618-006-0052-8 (Journal abstract)

Imran M, Bhatti A, King DM, Lerch M, Dietrich J, Doron G, Manlik K. Supervised machine learning-based decision
support for signal validation classification. Drug Saf. 2022;May;45(5):583-596. https://doi.org/10.1007,
s40264-022-01159-2 (Journal full text)

Plass M, Kargl M, Kiehl TR, Regitnig P, GeiBler C, Evans T, Zerbe N, Carvalho R, Holzinger A, Miiller H. Explainability
and causability in digital pathology. J Pathol Clin Res. 2023;Jul;9(4):251-260. https://doi.org/10.1002/cjp2.322
(Journal full text)

Siegel Z. In a world of stigma and bias, can a computer algorithm really predict overdose risk? Ann Emerg
Med. 2022;Jun;79(6):A16-A19 https://doi.org/10.1016/j.annemergmed.2022.04.006 (Journal full text)

Cochran G, Brown J, Yu Z, Frede S, Bryan MA, Ferguson A, et al. Validation and threshold identification of a prescription
drug monitoring program clinical opioid risk metric with the WHO alcohol, smoking, and substance involvement
screening test. Drug Alcohol Depend. 2021;228:109067 https://doi:10.1016/j.drugalcdep.2021.109067
(Journal full text)

Artificial Neural Network Protocol in Dermatology. -Workshop on Artificial Intelligence Applied to Health 2021
(F-WAIAH), 6th and 7th October 2021. (Feedback Report). (PDF accessed 29 September 2025)

E ARTIFICIAL INTELLIGENCE IN PHARMACOVIGILANCE


https://www.sciencedirect.com/science/article/abs/pii/S1566253523000891?casa_token=7z1mXoVsd1EAAAAA:L9v8syKfT8Gz9TJPQ-LLpd-kgPof1m1xv-1zx1XRajXJZ1gWUlt8brcy8jvBUSmUOiPofbNG-ld5
https://www.sciencedirect.com/science/article/pii/S1566253523000891?casa_token=7z1mXoVsd1EAAAAA:L9v8syKfT8Gz9TJPQ-LLpd-kgPof1m1xv-1zx1XRajXJZ1gWUlt8brcy8jvBUSmUOiPofbNG-ld5
https://doi.org/10.1016/j.japh.2023.11.023
https://doi.org/10.1016/j.japh.2023.11.023
https://www.sciencedirect.com/science/article/pii/S1544319123003849
https://doi.org/10.1002/pds.5501
https://onlinelibrary.wiley.com/doi/abs/10.1002/pds.5501?casa_token=0Ok8rism2MIAAAAA:8kCzGo5-KQHMO9zY_Af0g9xx3IqGpkzr9G_qHpKzzR49K-w_CQ8USZU3cBEF4z1eGAntliJwSYB3SJ7qQQ
https://doi.org/10.48550/arXiv.1602.04938
https://arxiv.org/abs/1602.04938
https://www.who.int/campaigns/s-a-r-a-h
https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449
https://doi:10.2196/46939
https://mededu.jmir.org/2023/1/e46939
https://doi.org/10.1038/s41746-025-01543-z
https://doi.org/10.1162/tacl_a_00401
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00401/106991/Gender-Bias-in-Machine-Translation
https://cioms1.sharepoint.com/Shared%20Documents/aCIOMS%20Working%20Groups/Artificial%20Intelligence%20in%20PV/Public%20Consultation/-Meldau%20EL,%20Bista%20S,%20Melgarejo-González%20C,%20Niklas%20Norén%20G.%20%5bcited%202024%20Oct%2015%5d.%20Available%20from:%20https:/who-umc.org/media/vecfvugf/automated-de-identificaction-of-case-narratives-using-deep-neural-networks-for-uk-yellow-card.pdf
https://doi.org/10.1007/s10618-006-0052-8
https://link.springer.com/article/10.1007/s40264-022-01159-2
https://link.springer.com/article/10.1007/s40264-022-01159-2
http://
https://doi.org/10.1002/cjp2.322
https://doi.org/10.1016/j.annemergmed.2022.04.006
https://www.annemergmed.com/article/S0196-0644(22)00243-8/fulltext
https://www.sciencedirect.com/science/article/pii/S0376871621005627?via%3Dihub
https://pubmed.ncbi.nlm.nih.gov/34610516/
https://media.tghn.org/medialibrary/2021/10/Feedback_report_-_WAIAH_English.pdf

APPENDIX 5.
CIOMS WORKING GROUP MEMBERSHIP
AND MEETINGS

The CIOMS Working Group XIV on Artificial intelligence in pharmacovigilance included
the following groups of stakeholders: academics, pharmaceutical companies, regulatory
authorities, as well as national and international organisations. The meeting minutes that
document the report writing process can be found on the CIOMS website at www.cioms.ch.
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Pharmaceutical companies

Name Company/Organisation
Amelio, Justyna AbbVie UK
Barrios, Luisa Merck Sharp & Dohme Colombia
Bate, Andrew GSK UK
Bellur, Arvind CSL Behring USA
Berridge, Adrian Takeda Development Center Americas, Inc USA
Carroll, Hua Biogen USA
Cherkas, Yauheniya Johnson & Johnson USA
Cooper, Selin AbbVie UK
Diniz, Mariane Bayer Brazil
Domalik, Douglas AstraZeneca UK
Franco, Piero Pfizer [taly
Francesco
Girod, Julie Sanofi USA
Grabowski, Neal Sanofi USA
Hauben, Manfred Merck KGaA, Darmstadt, Germany USA
Henn, Thomas United Therapeutics USA
Kara, Vijay GSK UK
Kempf, Dieter Genentech USA
Kidos, Kostadinos Formerly Takeda Development Center Americas, | USA
Inc
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Pharmaceutical companies

Name

Company/Organisation

Lorenz, Denny Formerly Bayer AG Germany
MacEntee Pileggi, Johnson & Johnson USA
Elizabeth

Patel, Ravi United Therapeutics USA
Reinhard Pietzsch, Bayer Germany
John

Rémming, Hans-Jorg Merck KGaA, Darmstadt, Germany Germany
Straus, Walter Moderna USA
Whitehead, James AstraZeneca UK

Regulatory authorities

Name

Company/Organisation

Buch, Brian Medicines and Healthcare products Regulatory UK
Agency (MHRA)
Durand, Julie European Medicines Agency (EMA) The
Netherlands
Egebjerg Juul, Kirsten | Danish Medicines Agency (DKMA) Denmark
Harrison, Kendal Medicines and Healthcare products Regulatory UK
Agency (MHRA)
Hirokawa-Voorburg, Health and Youth Care Inspectorate (HYCI) The
Satoko Netherlands
Horst, Alexander Swissmedic Switzerland
Jensen, Morten Danish Medicines Agency (DKMA) Denmark
Kjeer, Jesper Formerly Danish Medicines Agency (DKMA) Denmark
Ling, Benny Health Canada Canada
Da Luz Carvalho Brazilian Health Regulatory Agency (ANVISA) Brazil
Soares, Monica
Matsunaga, Yusuke Pharmaceuticals and Medical Devices Agency Japan
(PMDA)
Mentzer, Dirk Paul-Ehrlich-Institut (PEI) Germany
MesselhauBer, Formerly Paul-Ehrlich-Institut (PEI) Germany
Manuela
Moreira Cruz, Flavia Brazilian Health Regulatory Agency (ANVISA) Brazil
Perez, Nicolas Swissmedic Switzerland
Scholz, Irene Swissmedic Switzerland
Stammschulte, Swissmedic Switzerland
Thomas
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Regulatory authorities

Name Company/Organisation
Tregunno, Phil Medicines and Healthcare products Regulatory UK
Agency (MHRA)

National and international organisations

Name Company/Organisation

Mathur, Roli Indian Council of Medical Research India

Meldau, Eva-Lisa Uppsala Monitoring Centre/World Health Sweden
Organization

Norén, Niklas Uppsala Monitoring Centre/World Health Sweden
Organization

Rosenfeld, Stephen North Star Review Board USA

Yau, Brian World Health Organization Switzerland
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Company/Organisation

Heaton, Stephen Individual expert Germany
Hill, Sanna CIOMS Switzerland
Le Louét, Hervé CIOMS Switzerland
Réago, Lembit CIOMS Switzerland
Rannula, Kateriina CIOMS Estonia
Tsintis, Panos CIOMS UK

The Working Group XIV met 11 times from 2022 to 2025, as below, and most of the meetings
were hybrid in nature.

Chapter 1: Geneva, Switzerland 18-19 May 2022
Chapter 2: Geneva, Switzerland 10-11 October 2022
Chapter 3: Virtual meeting 19 January 2023
Chapter 4: Virtual meeting 12 April 2023
Chapter 5: Zurich, Switzerland 6-7 June 2023
Chapter 6: Virtual meeting 8 November 2023
Chapter 7: Virtual meeting 11 January 2023
Chapter 8: Geneva, Switzerland 7-8 March 2024
Chapter 9: Darmstadt, Germany 24-25 September 2024
Chapter 10: Geneva, Switzerland 25-26 June 2025
Chapter 11: Virtual meeting 8 September 2025

The CIOMS Working Group XIV Editorial Team met 28 times from March 2024 to October 2025.
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PUBLIC CONSULTATION COMMENTATORS

APPENDIX 6.

Name Company/Organisation Country/
region
Adeleye, Qadri National Postgraduate Medical College of Nigeria
Nigeria
Audibert, Francois Vitrana Inc. USA
Biswas, Aditya Johnson and Johnson USA
Bryant, Jason ArisGlobal UK
Burns, Ashley PIC/S Good Pharmacovigilance Practices USA
Expert Circle Working Group on Al and Machine
Learning Deputy Chairperson, FDA
Chaturvedi, Tanvi Soterius, Inc. India
Cho, Sylvia US FDA USA
Chouiyakh, Maria Mohammed V University Morocco
Dave, Jay COD Research PVT LTD USA
de la Pena Solis, Novo Nordisk Mexico
Francisco José
El Hussien, Amira RAY CRO Egypt
Ezzeldin, Hussein US FDA USA
Freixas, Elisabet Bristol Myers Squibb Switzerland
Ghimire, Namita Nepal Health Research Council Nepal
Grigolo, Sabrina EUPATI [taly
Gutierrez, Israel Caparna Inc. USA
Hapani, Kalindi COD Research PVT LTD India
Heitmann, Martin The Triality Group, LLC Germany
Ho, Jeffrey Perigent UK
lyer, Anand Johnson and Johnson USA
Jakubczyk, Jan PIC/S Good Pharmacovigilance Practices Poland
Working Group on Al and Machine Learning,
Polish Chief Pharmaceutical Inspectorate
Josephson, Aaron Teva Pharmaceuticals USA
Kessi, Una HDI Safety, Oracle Health and Life Sciences UK
Klueglich, Matthias DGPharMed Germany
Layton, Debbie Lane Clark & Peacock LLP UK
McAteer, Kaitlyn Merck Animal Health USA
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Name Company/Organisation Country/
region
Nedog, Katarina European Federation of Pharmaceutical Belgium
Industries and Associations
Nilaus Preestegaard, Novo Nordisk A/S Denmark
Sgren
Nishizawa, Claudio ANVISA Brazil
Orriss, Andrew Kenvue USA
Patel, Jiggar Kenvue USA
Pharmacovigilance The European CRO Federation, EUCROF Europe
Working Group
Prajapati, Vatsal COD Research PVT LTD India
Prendergast, Christine | PIC/S Good Pharmacovigilance Practices Ireland
Working Group on Al and Machine Learning,
HPRA
Radicke, Sophie PIC/S Good Pharmacovigilance Practices UK
Working Group on Al and Machine Learning,
MHRA
Sahu, Aneesha US FDA USA
Salem, Myriam PIC/S Good Pharmacovigilance Practices Canada
Expert Circle Working Group on Al and Machine
Learning Chairperson, Health Canada
Santana-Quintero, Luis | US FDA USA
Schaeffer, Brian Johnson & Johnson USA
Scheerlinck, Rudi Merck KGaA Germany
Shee, Angela Johnson & Johnson USA
Singh Bedi, Simranjeet | Accenture Solutions Private Limited India
Smith, Sean US FDA USA
Stockton, Brandi The Triality Group, LLC Germany
Thomas, Michael American Society of Pharmacovigilance USA
Physicians
Trevett, Kiernan Roche USA
Tsvetanova, Antonia Lane Clark & Peacock LLP UK
van Hunsel, Florence Pharmacovigilance Centre Lareb The

Netherlands

Vinas, Norbert Vigintake SL Spain
WENG, Xinyu PIC/S Good Pharmacovigilance Practices Switzerland
Working Group on Al and Machine Learning,
WHO
Wilson, Marie-Claire Bristol Myers Squibb Switzerland
Yuen, Alexander Bristol Myers Squibb Switzerland
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Company/Organisation Country/

region
Zdorovtsova, Natalia Lane Clark & Peacock LLP UK
Zhou, Jessica US FDA USA
Anonymous Sanofi USA
Anonymous Jazz Pharmaceuticals [taly

o
o=y
=
=
o
o
>
(%]
=
=
Q
=5
o
)
o
o
3
=
@
=
=
Q
—
o
=
(%]

ARTIFICIAL INTELLIGENCE IN PHARMACOVIGILANCE ﬂ



This report on Artificial intelligence in pharmacovigilance
addresses a rapidly emerging cross-disciplinary field that is
at the intersection of pharmacovigilance, computer science,
mathematics, regulation, law, medicine, human rights, psychology
and social science. Consequently, just as with medicinal
products, it is important to establish the approved indications,
posology, side effects, and warnings and precautions for use of
artificial intelligence in pharmacovigilance. The latter must be
clearly defined and understood by many people from different
backgrounds to propel research and practical implementation
in an effective, safe and responsible manner. The diverse pool
includes professionals, researchers, and decision makers working
in pharmacovigilance in biopharmaceutical industry, regulatory
authorities, and academia. It also includes software vendors that
develop artificial intelligence solutions for pharmacovigilance,
including signal management and all aspects of Individual Case
Safety Report processing. This report provides the requisite
terminology and conceptual understanding to actively engage
in this space, either by participating in the applied scientific
research and public discourse, or by performing evaluations
and making decisions at one's organisation.

Artificial intelligence in pharmacovigilance. Report of the CIOMS Working
Group XIV. Geneva: Council for International Organizations of Medical
Sciences (CIOMS), 2025.

This publication is freely available on the CIOMS website.

CIOMS publications may be obtained through the publications emodule at
https://cioms.ch/publications/. CIOMS, P.O. Box 2100, CH1211 Geneva 2,
Switzerland, www.cioms.ch, email: info@cioms.ch.

7892307361107
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