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6.1            Introduction 

 Several published works have confi rmed the pos-
sibility to obtain a population of stem cells from 
adipose tissue that share similar features    and 
morphogenetic profi le of MSCs from known 
sources such as BM, UCB, amniotic fl uid, scalp 
tissue, placenta, and synovial tissue [ 1 – 13 ]. A 
common pattern of all MSC cultures in vitro is a 
combination of specifi c and homogeneous traits 
including the formation of uniform colonies with 
a typical fi broblast spindle-like shape, self- 
renewal capacity, high viability, and multilineage 
ability such as osteoblasts, adipocytes, keratino-
cytes, cardiomyocytes, chondrocytes, hepato-
cytes, and tenocytes [ 4 – 6 ,  14 – 18 ]. In general, 
they do not express defi nite markers of hemato-
poietic cell surface phenotype and are positive 
for integrins and adhesion molecules, positive for 
matrix receptors, and positive for few very spe-
cifi c markers such as CD13 (APN), CD28, 
CD166 (ALCAM), CD44, CD73, CD90, CD105 
and CD166, vimentin, desmin, Runx2, osterix 
(OX), and HLA class I [ 4 ,  10 ,  11 ,  14 ,  15 ,  19 ,  20 ]. 

 One of the most intriguing traits of MSCs is 
their immune-modulatory capacity that is of rel-
evant clinical importance as they may be trans-
planted without the need of HLA matching 
between donor and recipient which is strictly 
required in allogeneic adult stem cell procedures, 
in BM transfusion, or in organ transplants [ 3 , 
 21 – 26 ]. While each MSC subgroup shows an 
identical immune-phenotypic profi le, each set 
clearly expresses remarkable quantitative and 
qualitative differences, revealing a sort of hetero-
geneity linked to a specifi c genetic set that con-
trol different activities within the system [ 5 ,  11 , 
 13 ,  18 ,  25 ]. The possibility to obtain MSCs from 
different sources other than the more classic ones 
like BM and UCB is of vital importance in the 
fi eld of regenerative medicine and may provide 
the opportunity to avoid unnecessary invasive 
procedures or to explore a better sustainable ther-
apeutic strategy which is based on multiple pos-
sible choices considered on a case-by-case basis 
[ 13 ,  18 ,  26 – 28 ]. Adipose tissue, like marrow, is 
of mesoderm origin; it starts to form during the 
last trimester of intrauterine life and contains a 

variety of stromal cells that group into microvas-
cular endothelial cells, smooth muscle cells, and 
MSCs that can be isolated by enzymatic diges-
tion and centrifugation [ 18 ,  24 ,  29 ,  30 ]. Adipose 
tissue is to be considered a complex structure that 
performs on multiple levels as an energy store 
and as an endocrine organ capable of producing 
and secreting a large number of molecules includ-
ing leptin, adiponectin, and resistin which control 
endothelial functionality and may infl uence the 
vascular system [ 29 ,  31 ,  32 ]. Data from our study, 
in line with published research, have confi rmed 
that fat tissue compared to BM contains more 
MSCs. From 1 g of tissue, you may collect 
5 × 10 4–5  MSCs which is 500-folds larger than 1 g 
of MSCs obtained from BM [ 24 ,  33 ,  34 ]. hATM-
SCs, as their respective equivalent, have the abil-
ity to differentiate into diverse cell lines such as 
myoblasts, chondroblasts, cardiomyocytes, hepa-
tocytes, adipocytes, and osteoblasts maintaining 
a unique plasticity typical of all MSCs [ 13 ,  19 , 
 24 ,  30 ,  35 ,  36 ]. This study, in line with edited 
data, has demonstrated that hATMSCs, at least in 
vitro culture, behave in a similar manner and are 
able to home in a bone-like environment such as 
sea coral scaffold [ 10 ,  19 ,  27 ]. 

 In line with other studies and with our previ-
ously published work, the authors have tried to 
establish a method that allows the use of these 
cells in combination with bio-scaffolds to be used 
in the reconstruction of hard tissue such as bone 
and in scaffolds in repairing damaged soft tissue 
and semihard tissues such as cartilage and inter-
vertebral disk bulbs [ 10 ,  37 ,  38 ]. Therefore, the 
fi rst task was to use hATMSCs and adipocytes 
and osteoblasts seeded onto marine coral  Porites 
lutea  to generate a hard structure bio-scaffold; 
the second task was to generate a soft scaffold 
using a fi brin gel seeded with human adipocyte 
cells to generate a soft structure scaffold. The 
fi brin gel has been generated by using autologous 
patient’s blood; from this sample, fi brinogen and 
thrombin have been isolated and then mixed in 
unique solution in a ratio of 1:1 [ 37 – 40 ]. 

 However, despite the promising results from 
preliminary clinical trials, our concern is about 
the possible contribution of hATMSCs in vivo as 
an active player in the process of vascular 
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13.1  Introduction

Diseases, trauma, and surgical procedures can be 
the cause of bone paucity and defects. Due to the 
complexity of bone anatomy and physiology bone 

tissue degeneration and diseases can pose a big 
threat to doctors and physicians. However, modern 
bone tissue biomedical engineering has been con-
sidered as a valid substitute solution for these con-
ditions [1]. Procedures applied to repair defects or 
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degeneration need the use of proper biomaterials 
with the right dimensions and anatomy shape that 
can fit into the damaged area. The cases of larger 
and more difficult defects need highly osteogenic 
scaffolds to promote and improve the bone tissue 
formation and regeneration [2].

The majority of scaffolds made of ceramics and 
metals or from polymers showed a weak osteo-
genic capability. Bone grafts are currently avail-
able in many different forms, such as allogeneic/
autologous demineralized bone matrix or implants, 
growth factor-loaded microbeads, or bio-derivate 
as calcium hydroxyapatite, gels, ceramic derivate, 
sea corals, and metals [2, 3]. The main target is to 
reduce the incidence of collateral complications 
such as rejection, infection and inflammation, and 
donor-site morbidity and of course reduce the 
overall costs and related expenses such as frequent 
hospitalization [3–5]. Breakdowns, such as partial 
ruptures or complete collapse, are the major issues 
related to synthetic implants, generally due to 
quality of the material and subtle autoimmune 
responses that may also create ideal conditions for 
bacterial growth, inflammation, and rejection [6–
9]. Metal implants, for example, may cause mal-
function due to aseptic loosening with specific 
inflammatory and immune responses to metal-
wear particles released during bio-corrosion which 
intensify the osteolytic activity of osteoclasts at the 
bone- implant interface, leading to a progressive 
loss of fixation [8, 9]. Therefore, an optimal bio-
material should possess specific bio-characteris-
tics and qualities that should be biodegradable, 
tolerable, and safely absorbed by the body. This 
should happen without causing any kind of dam-
aging event such as an inflammation or an immune 
reaction, capable of carrying and supporting tissue 
growth and proliferation, thus allowing bone 
regeneration [5, 9].

The latest generations of bio-implants have 
been created with the precise intent of functioning 
as cell carriers capable of reproducing human 
bone formation process. The newest generation of 
these types of scaffolds has been developed with 
materials that possess specific mechanical and 
structural properties that are compatible with the 
anatomical site into which they are to be inserted, 
with enough volume fraction and high surface area 
to carry an enough number of cells within the scaf-

fold and the surrounding host tissues. This allows 
ingrowth and vascularization [5]. Therefore, the 
new bio-implants tend to replicate the process of 
the formation of new bone development or which 
physiologically takes place after an injury [10].

An inflammatory response takes place after an 
implantation of a biomaterial as a consequence of 
host immune response [10]. During this phase 
monocytes differentiate to tissue macrophages. 
However, presence of MSCs promotes an immune-
modulatory activity on macrophage M1/M2 bal-
ance towards M2 commencing a favorable cascade 
of events where interleukins such as IL-10, IL-4, 
IL-13, and IL-6 and prostaglandin E2 initiate the 
first step of the repairing process [11–14]. Bone 
plays a key role in well functioning of immune sys-
tem and it is the site that immune cells are created. 
In fact, autoimmune disorders often induce bone 
tissue damages and degeneration, an event that has 
been confirmed by an experiment where macro-
phage ablation leads to intramembranous bone 
defection and inhibiting of the healing process [14].

In effect, previous studies have shown that 
some biomaterials due to high similarity with 
human tissues are able to trigger physic-chemical 
signals leading to stem cell differentiation towards 
diverse cell phenotypes as osteoblasts [15, 16]. 
Results have shown that biomaterials based on 
calcium phosphate (CaP), a major constituent of 
native bone tissue, induce naïve stem cells towards 
osteogenic differentiation promoting in vivo bone 
tissue formation and augmentation [16, 17].

However, though CaP is quickly absorbed 
in vivo, the process often occurs preceding the for-
mation of new bone tissue that results in an incon-
gruence between the host’s new bone and scaffold. 
Conversely, β-TCP seems to be better compatible as 
the absorption rate is slower with a steady release of 
both calcium (Ca2+) and sulfate (SO4

2−) ions [18].
In line with our published study, we can con-

firm that hPB contains the right amount of differ-
ent subsets of pluripotent and multipotent stem 
cells such as MSCs, HSCs, NSCs, and ESCs 
capable of differentiating into cells of different 
lineages such as osteoblasts [19]. In this current 
study, we have noted that part of hPB-SCs were 
induced to differentiate to active osteoblasts 
under the direct influence of β-TCP granules 
within a period of 7–10 days without the need of 
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